

UNIT-I

Introduction to Design and analysis of algorithms

What is an algorithm?

Algorithm is a set of steps to complete a task.

For example,

Task: to make a cup of tea.

Algorithm:

· add water and milk to the kettle,
· boilit, add tea leaves,
· Add sugar, and then serve it in cup.
What is Computer algorithm?

‘’a set of steps to accomplish or complete a task that is described precisely enough that a computer can run it’’.

Described precisely: very difficult for a machine to know how much water, milk to be added etc. in the above tea making algorithm.

These algorithmsrun on computers or computational devices.Forexample, GPS in our smartphones, Google hangouts.

GPS uses shortest path algorithm. Online shopping uses cryptography which uses RSA algorithm.

Characteristics of an algorithm:-

· Must take an input.
· Must give some output(yes/no,valueetc.)
· Definiteness –each instruction is clear and unambiguous.
· Finiteness –algorithm terminates after a finite number of steps.
· Effectiveness –every instruction must be basic i.e. simple instruction.
Expectation from an algorithm

· Correctness:-
Correct: Algorithms must produce correct result.

Produce an incorrect answer:Even if it fails to give correct results all the time still there is a control on how often it gives wrong result. Eg.Rabin-Miller PrimalityTest (Used in RSA algorithm): It doesn’t give correct answer all the time.1 out of 250 times it gives incorrect result.

Approximation algorithm: Exact solution is not found, but near optimal solution can be found out. (Applied to optimization problem.)

· Less resource usage:
Algorithms should use less resources (time and space).

Resource usage:

Here, the time is considered to be the primary measure of efficiency .We are also concerned with how much the respective algorithm involves the computer memory.But mostly time is the resource that is dealt with. And the actual running time depends on a variety of backgrounds: like the speed of the Computer, the language in which the algorithm is implemented, the compiler/interpreter, skill of the programmers etc.

So, mainly the resource usage can be divided into: 1.Memory (space) 2.Time

Time taken by an algorithm?

performance measurement or Apostoriori Analysis:
Implementing the algorithm

in a machine and then calculating the time taken by the system to execute the program successfully.

Performance Evaluation or Apriori Analysis. Before implementing the algorithm in a system. This is done as follows

1. How long the algorithm takes :-will be represented as a function of the size of the input.

f(n)→how long it takes if ‘n’ is the size of input.

2. How fast the function that characterizes the running time grows with the input size.

“Rate of growth of running time”.

The algorithm with less rate of growth of running time is considered better.

How algorithm is a technology ?

Algorithms are just like a technology. We all use latest and greatest processors but we need to run implementations of good algorithms on that computer in order to properly take benefits of our money that we spent to have the latest processor. Let’s make this example more concrete by pitting a faster computer(computer A) running a sorting algorithm whose running time on n values grows like n2 against a slower computer (computer B) running asorting algorithm whose running time grows like n lg n. They eachmust sort an array of 10 million numbers. Suppose that computer A executes 10 billion instructions per second (faster than anysingle sequential computer at the time of this writing) and computer B executes only 10 million instructions per second, so that computer A is1000 times faster than computer B in raw computing power. To makethe difference even more dramatic, suppose that the world’s craftiestprogrammer codes in machine language for computer A, and the resulting code requires 2n2 instructions to sort n numbers. Suppose furtherthat just an average programmer writes for computer B, using a high-level language with an inefficient compiler, with the resulting code taking 50n lg n instructions.

Computer A (Faster)
Computer B(Slower)

Running time grows like n2.
Grows innlogn.

10 billion instructions per sec.
10million instruction per sec

2n2 instruction.
50 nlogn instruction.

[image: image145.wmf]5

3

2

^

C

=

+

=

	Time taken=
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	It is more than 5.5hrs
	
	
	
	
	
	it is under 20 mins.

	So
	choosing a good
	algorithm (algorithm with slower rate of growth) as used by

	computer
	B affects a lot.
	
	
	
	
	
	
	
	
	
	
	

[image: image146.wmf]3

1

2

^

C

=

+

=

Growth of Functions (Asymptotic notations)

Before going for growth of functions and asymptotic notation let us see how to analyase an algorithm.

How to analyse an Algorithm

Let us form an algorithm for Insertion sort (which sort a sequence of numbers).The pseudo code for the algorithm is give below.

	Pseudo code:
	

	for j=2 to A length --
	C1

	key=A[j]---
	C2

	//Insert A[j] into sorted Array A[1.....
	j-1]------------------------C3

	i=j-1--
	C4

	while i>0 & A[j]>key---
	C5

	A[i+1]=A[i]---
	C6

	i=i-1--
	C7

	A[i+1]=key--
	C8

[image: image147.wmf]5

4

1

^

C

=

+

=

Let Ci be the cost of ith line. Since comment lines will not incur any cost C3=0.

Cost
No. Of times Executed

C1n

C2 n-1

C3=0
n-1

C4n-1

[image: image148.wmf]3

2

1

^

C

=

+

=

C5[image: image1.jpg]

[image: image2.jpg]

[image: image3.jpg]

[image: image4.jpg]

[image: image5.jpg]

[image: image6.jpg]

[image: image7.jpg]

[image: image149.wmf]5

4

1

^

C

=

+

=

C6[image: image8.jpg]

[image: image9.jpg]

[image: image10.jpg]

[image: image11.jpg]

[image: image12.jpg]

[image: image13.jpg]

[image: image14.jpg]

[image: image15.jpg]

[image: image16.jpg]

[image: image17.jpg]

)

[image: image150.wmf]5

3

2

^

C

=

+

=

[image: image151.wmf]3

0

3

^

C

=

+

=

C7[image: image18.jpg]

[image: image19.jpg]

[image: image20.jpg]

[image: image21.jpg]

[image: image22.jpg]

[image: image23.jpg]

[image: image24.jpg]

[image: image25.jpg]

[image: image26.jpg]

[image: image27.jpg]

[image: image152.wmf]5

2

3

^

C

=

+

=

[image: image153.png]inf inf inf inf inf
12 inf 11 inf 0
0 3 inf inf 2
inf 3 12 inf 0
11 0 0 inf inf

C8n-1

	Running time of the algorithm is:
	
	
	

	T(n)=C1n+C2(n-1)+0(n-1)+C4(n-1)+C5
	+C6(
)+C7(
)+ C8(n-1)

[image: image154.png]inf 10 17 0 1
12 inf 11 2 0
0 3 inf 0 2
15 3 12 inf 0
11 0 0 12 inf

[image: image155.png]inf 10 17 0 1
12 inf 11 2 0
0 3 inf 0 2
15 3 12 inf 0
11 0 0 12 inf

[image: image156.png]inf 10 17 0 1
12 inf 11 2 0
0 3 inf 0 2
15 3 12 inf 0
11 0 0 12 inf

Best case:

It occurs when Array is sorted.

All tjvalues are 1.

T(n)=C1n+C2(n-1)+0 (n-1)+C4(n-1)+C5 [image: image28.jpg]

[image: image29.jpg]

[image: image30.jpg]

[image: image31.jpg]

[image: image32.jpg]

[image: image33.jpg]

[image: image34.jpg]

[image: image35.jpg]

+C6([image: image36.jpg]

[image: image37.jpg]

[image: image38.jpg]

[image: image39.jpg]

[image: image40.jpg]

)+C7([image: image41.jpg]

[image: image42.jpg]

[image: image43.jpg]

[image: image44.jpg]

[image: image45.jpg]

[image: image46.jpg]

)+ C8(n-1)

[image: image157.jpg]

[image: image158.jpg].. =20,000 L R1163

[image: image159.jpg]Example:

j i j
1203 45 6 2 3145 6 23 415 6
52|4513 slale[1]3 4]s]e|1]3
L\ L\ LY

i J
123 4 516 234556 23 456
2]a[s5]e[1]3 2]4]5]6]3 2[3]4]5]6
K4UUY LAY

[image: image160.jpg]

[image: image161.jpg]

[image: image162.jpg]

=C1n+C2 (n-1) +0 (n-1) +C4 (n-1) +C5 [image: image47.jpg]

[image: image48.jpg]

[image: image49.jpg]

[image: image50.jpg]

[image: image51.jpg]

+ C8 (n-1)

[image: image163.jpg]

· (C1+C2+C4+C5+ C8) n-(C2+C4+C5+ C8)

· Which is of the forman+b.
· Linear function of n.So, linear growth.
Worst case:

It occurs when Array is reverse sorted, and tj =j

T(n)=C1n+C2(n-1)+0 (n-1)+C4(n-1)+C5 [image: image52.jpg]

[image: image53.jpg]

[image: image54.jpg]

[image: image55.jpg]

[image: image56.jpg]

[image: image57.jpg]

[image: image58.jpg]

[image: image59.jpg]

+C6([image: image60.jpg]

[image: image61.jpg]

[image: image62.jpg]

[image: image63.jpg]

[image: image64.jpg]

[image: image65.jpg]

)+C7([image: image66.jpg]

[image: image67.jpg]

[image: image68.jpg]

[image: image69.jpg]

[image: image70.jpg]

[image: image71.jpg]

)+ C8(n-1)

[image: image164.jpg]

[image: image165.jpg]

[image: image166.jpg]

[image: image167.jpg]

[image: image168.jpg]

[image: image169.jpg]

[image: image170.jpg]

=C1n+C2(n-1)+C4(n-1)+C5 [image: image72.jpg]

[image: image73.jpg]

[image: image74.jpg]

[image: image75.jpg]

[image: image76.jpg]

+C6([image: image77.jpg]

[image: image78.jpg]

[image: image79.jpg]

[image: image80.jpg]

[image: image81.jpg]

[image: image82.jpg]

)+C7([image: image83.jpg]

[image: image84.jpg]

[image: image85.jpg]

[image: image86.jpg]

[image: image87.jpg]

)+ C8(n-1)

[image: image171.jpg]

[image: image172.jpg]

[image: image173.jpg]

which is of the form an2+bn+c

Quadratic function. So in worst case insertion set grows in n2.

Why we concentrate on worst-case running time?

· The worst-case running time gives a guaranteed upper bound on the runningtime for any input.
· For some algorithms, the worst case occurs often. For example, when searching, the worst case often occurs when the item being searched for is not present, and searches for absent items may be frequent.
· Why not analyze the average case? Because it’s often about as bad as the worst case.
Order of growth:

It is described by the highest degree term of the formula for running time. (Drop lower-order terms. Ignore the constant coefficient in the leading term.)

Example: We found out that for insertion sort the worst-case running time is of the form an2 + bn + c.

Drop lower-order terms. What remains is an2.Ignore constant coefficient. It results in n2.But we cannot say that the worst-case running time T(n) equals n2 .Rather It grows like n2 . But it doesn’t equal n2.We say that the running time is Θ (n2) to capture the notion that the order of growth is n2.

We usually consider one algorithm to be more efficient than another if its worst-case running time has a smaller order of growth.

Asymptotic notation

· It is a way to describe the characteristics of a function in the limit.
· It describes the rate of growth of functions.
· Focus on what’s important by abstracting away low-order terms and constant factors.
· It is a way to compare “sizes” of functions:
O≈ ≤

Ω≈ ≥

Θ ≈ =

o ≈ <

ω ≈ >

[image: image174.jpg]

[image: image175.jpg]

[image: image176.jpg]

Example: n2 /2 − 2n = Θ (n2), with c1 = 1/4, c2 = 1/2, and n0 = 8[image: image177.jpg]

Divide and Conquer

DIVIDE AND CONQUER ALGORITHM

· In this approach ,we solve a problem recursively by applying 3 steps
1. DIVIDE-break the problem into several sub problems of smaller size.

2. CONQUER-solve the problem recursively.

3. COMBINE-combine these solutions to create a solution to the original problem.

CONTROL ABSTRACTION FOR DIVIDE AND CONQUER ALGORITHM

Algorithm D and C (P)

{

if small(P)

then return S(P)

else

{
divide P into smaller instances P1 ,P2Pk

Apply D and C to each sub problem

Return combine (D and C(P1)+ D and C(P2)+.......+D and C(Pk))

}
Let a recurrence relation is expressed as
TT(n)=1, if n<=C

 aT(n/b) + D(n)+ C(n) ,otherwise

then n=input size a=no. Of sub-problems n/b= input size of the sub-problems

Worst case analysis of merge sort, quick sort

Merge sort

It is one of the well-known divide-and-conquer algorithm. This is a simple and very efficient algorithm for sorting a list of numbers.

We are given a sequence of n numberswhich we will assume is stored in an array A [1...n]. Theobjective is to output a permutation of this sequence, sorted in increasing order. This is normally done by permuting the elements within the array A.

How can we apply divide-and-conquer to sorting? Here are the major elements of the Merge Sort algorithm.

Divide: Split A down the middle into two sub-sequences, each of size roughly n/2 .

Conquer: Sort each subsequence (by calling MergeSort recursively on each).

Combine: Merge the two sorted sub-sequences into a single sorted list.

The dividing process ends when we have split the sub-sequences down to a single item. A sequence of length one is trivially sorted. The key operation where all the work is done is in the combine stage,which merges together two sorted lists into a single sorted list. It turns out that the merging process is quite easy to implement.

The following figure gives a high-level view of the algorithm. The “divide” phase is shown on the left. It works top-down splitting up the list into smaller sublists. The “conquer and combine” phases areshown on the right. They work bottom-up, merging sorted lists together into larger sorted lists.

Designing the Merge Sort algorithm top-down. We’ll assume that the procedure thatmerges two sortedlist is available to us. We’ll implement it later. Because the algorithm is called recursively on sublists,in addition to passing in the array itself, we will pass in two indices, which indicate the first and lastindices of the subarray that we are to sort. The call MergeSort(A, p, r) will sort the sub-arrayA [p..r] and return the sorted result in the same subarray.

Here is the overview. If r = p, then this means that there is only one element to sort, and we may returnimmediately. Otherwise (if p < r) there are at least two elements, and we will invoke the divide-and-conquer. We find the index q, midway between p and r, namely q = (p + r) / 2 (rounded down to thenearest integer). Then we split the array into subarrays A [p..q] and A [q + 1 ..r] . Call Merge Sort recursively to sort each subarray. Finally, we invoke a procedure (which we have yet to write) whichmerges these two subarrays into a single sorted array.

	MergeSort(array A, int p, int r) {
	

	if
	(p < r) {
	// we have at least 2 items

	q = (p + r)/2
	

	MergeSort(A, p, q)
	// sort A[p..q]

	MergeSort(A, q+1, r)
	// sort A[q+1..r]

Merge(A, p, q, r)
// merge everything together

}

Merging: All that is left is to describe the procedure that merges two sorted lists. Merge(A, p, q, r)assumes that the left subarray, A [p..q] , and the right subarray, A [q + 1 ..r] , have already been sorted.We merge these two subarrays by copying the elements to a temporary working array called B. Forconvenience, we will assume that the array B has the same index range A, that is, B [p..r] . We have to indices i and j, that point to the current elements ofeach subarray. We move the smaller element into the next position of B (indicated by index k) andthen increment the corresponding index (either i or j). When we run out of elements in one array, thenwe just copy the rest of the other array into B. Finally, we copy the entire contents of B back into A.

	Merge(array A, int p, int q, int r) {
	// merges A[p..q] with A[q+1..r]
	

	array B[p..r]
	
	
	

	i = k = p
	//initialize
	pointers
	

	j = q+1
	
	
	

	while (i <= q and j <= r) {
	// while
	both subarrays are
	nonempty

	if (A[i] <= A[j]) B[k++] = A[i++]
	// copy from left subarray
	

	else B[k++] = A[j++]
	// copy from right subarray
	

	}
	
	
	

	while (i <= q) B[k++] = A[i++]
	// copy any leftover to B
	

	while (j <= r) B[k++] = A[j++]
	
	
	

	for i = p to r do A[i] = B[i]
	// copy B back to A
	}

Analysis: What remains is to analyze the running time of MergeSort. First let us consider the running timeof the procedure Merge(A, p, q, r). Let n = r − p + 1 denote the total length of both the leftand right subarrays. What is the running time of Merge as a function of n? The algorithm contains fourloops (none nested in the other). It is easy to see that each loop can be executed at most n times. (Ifyou are a bit more careful you can actually see that all the while-loops

together can only be executed ntimes in total, because each execution copies one new element to the array B, and B only has space forn elements.) Thus the running time to Merge n items is Θ (n) . Let us write this without the asymptoticnotation, simply as n. (We’ll see later why we do this.)

Now, how do we describe the running time of the entire MergeSort algorithm? We will do this throughthe use of a recurrence, that is, a function that is defined recursively in terms of itself. To avoidcircularity, the recurrence for a given value of n is defined in terms of values that are strictly smallerthan n. Finally, a recurrence has some basis values (e.g. for n = 1), which are defined explicitly.

Let’s see how to apply this to MergeSort. Let T (n) denote the worst case running time of MergeSort onan array of length n. For concreteness we could count whatever we like: number of lines of pseudocode,number of comparisons, number of array accesses, since these will only differ by a constant factor.Since all of the real work is done in the Merge procedure, we will count the total time spent in theMerge procedure.

First observe that if we call MergeSort with a list containing a single element, then the running time is aconstant. Since we are ignoring constant factors, we can just write T (n) =1 . When we call MergeSortwith a list of length n >1 , e.g. Merge(A, p, r), where r − p +1 = n, the algorithm first computes q = (p + r) / 2 . The subarray A [p..q] , which contains q − p + 1 elements. You can verify that is of size n/ 2 . Thus the remaining subarray A [q +1 ..r] has n/ 2 elements in it. How long does it taketo sort the left subarray? We do not know this, but because n/ 2< n for n >1 , we can express this as T (n/ 2) . Similarly, we can express the time that it takes to sort the right subarray as T (n/ 2).

Finally, to merge both sorted lists takes n time, by the comments made above. In conclusion we have

T (n) =1 if n = 1 ,

2T (n/ 2) + n otherwise.

Solving the above recurrence we can see that merge sort has a time complexity of Θ (n log n) .

QUICKSORT

Worst-case running time: O (n2). Expected running time: O (n lgn). Sorts in place.

 an element in the middle, [image: image88.png]

n/2[image: image89.png]

 , of the array. Let k = [image: image90.png]

n/2[image: image91.png]

. If q ≤ A[k], then search in the A[1 . . . k]; otherwise search T[k+1 . . n] for 'q'. Binary search for q in subarray A[i . . j] with the promise that

A[i-1] < x ≤ A[j]
If i = j then
 return i (index)
k= (i + j)/2
if q ≤ A [k]
 then return Binary Search [A [i-k], q]
 else return Binary Search [A[k+1 . . j], q]

Analysis

Binary Search can be accomplished in logarithmic time in the worst case , i.e., T(n) = θ(log n). This version of the binary search takes logarithmic time in the best case.

Iterative Version of Binary Search

Interactive binary search for q, in array A[1 . . n]

if q > A [n]
 then return n + 1
i = 1;
j = n;
while i < j do
 k = (i + j)/2
 if q ≤ A [k]
 then j = k
 else i = k + 1
return i (the index)
 Strassen’s Matrix Multiplication
Given two square matrices A and B of size n x n each, find their multiplication matrix.

NaiveMethod
Following is a simple way to multiply two matrices.

	void multiply(int A[][N], int B[][N], int C[][N])
{
 for (int i = 0; i < N; i++)
 {
 for (int j = 0; j < N; j++)
 {
 C[i][j] = 0;
 for (int k = 0; k < N; k++)
 {
 C[i][j] += A[i][k]*B[k][j];
 }
 }
 }
}

Time Complexity of Strassen’s Method

Addition and Subtraction of two matrices takes O(N2) time. So time complexity can be written as

T(N) = 7T(N/2) + O(N2)

The time complexity of above method is

O(NLog7) which is approximately O(N2.8074)

Generally Strassen’s Method is not preferred for practical applications for following reasons.
1) The constants used in Strassen’s method are high and for a typical application Naive method worksbetter.

2) For Sparse matrices, there are better methods especially designed for them.

3) The submatrices in recursion take extra space.

4) Because of the limited precision of computer arithmetic on noninteger values, larger errors accumulate in Strassen’s algorithm than in Naive Method

UNIT- II
Greedy Method

Introduction

Let we are given a problem to sort the array a = {5, 3, 2, 9}. Someone says the array after sorting is {1, 3, 5, 7}. Can we consider the answer is correct? The answer is definitely “no” because the elements of the output set are not taken from the input set. Let someone says the array after sorting is {2, 5, 3, 9}. Can we admit the answer? The answer is again “no” because the output is not satisfying the objective function that is the first element must be less than the second, the second element must be less than the third and so on. Therefore, the solution is said to be a feasible solution if it satisfies the following constraints.

(i) Explicit constraints: - The elements of the output set must be taken from the input set.

(ii) Implicit constraints:-The objective function defined in the problem.

The best of all possible solutions is called the optimal solution. In other words we need to find the solution which has the optimal (maximum or minimum) value satisfying the given constraints.

The Greedy approach constructs the solution through a sequence of steps. Each step is chosen such that it is the best alternative among all feasible choices that are available. The choice of a step once made cannot be changed in subsequent steps.

Let us consider the problem of coin change. Suppose a greedy person has some 25p, 20p, 10p, 5paise coins. When someone asks him for some change then be wants to given the change with minimum number of coins. Now, let someone requests for a change of top then he first selects 25p. Then the remaining amount is 45p. Next, he selects the largest coin that is less than or equal to 45p i.e. 25p. The remaining 20p is paid by selecting a 20p coin. So the demand for top is paid by giving total 3 numbers of coins. This solution is an optimal solution. Now, let someone requests for a change of 40p then the Greedy approach first selects 25p coin, then a 10p coin and finally a 5p coin. However, the some could be paid with two 20p coins. So it is clear from this example that Greedy approach tries to find the optimal solution by selecting the elements one by one that are locally optimal. But Greedy method never gives the guarantee to find the optimal solution.

The choice of each step is a greedy approach is done based in the following:

· It must be feasible
· It must be locally optimal
· It must be unalterable
Fractional Knapsack Problem

· Let there are n number of objects and each object is having a weight and contribution to profit. The knapsack of capacity M is given. The objective is to fill the knapsack in such a way that profit shall be maximum. We allow a fraction of item to be added to the knapsack.

· Mathematically, we can write

· n

· maximize∑ pi xi

· i 1

· Subject to

· n

· ∑wi xi  M

· i 1

· 1  i  n and 0  xi  1.

· Where pi and wi are the profit and weight of ith object and xi is the fraction of ith object to be

· selected. For example

· Given n = 3, (p1, p2, p3) = {25, 24, 15}

	(w1, w2, w3) = {18, 15, 10}
	M = 20

Solution

Some of the feasible solutions are shown in the following table.

	Solution No
	x1
	x2
	x3
	∑wi xi
	∑pi xi

	
	
	
	
	
	

	1
	1
	2/15
	0
	20
	28.2

	
	
	
	
	
	

	2
	0
	2/3
	1
	20
	31.0

	
	
	
	
	
	

	3
	0
	1
	1/2
	20
	31.5

	
	
	
	
	
	

These solutions are obtained by different greedy strategies.

Greedy strategy I: In this case, the items are arranged by their profit values. Here the item with maximum profit is selected first. If the weight of the object is less than the remaining capacity of the knapsack then the object is selected full and the profit associated with the object is added to the total profit. Otherwise, a fraction of the object is selected so that the knapsack can be filled exactly. This process continues from selecting the highest profitable object to the lowest profitable object till the knapsack is exactly full.

Greedy strategy II: In this case, the items are arranged by fair weights. Here the item with minimum weight in selected first and the process continues like greedy strategy-I till the knapsack is exactly full.

Greedy strategy III: In this case, the items are arranged by profit/weight ratio and the item with maximum profit/weight ratio is selected first and the process continues like greedy strategy-I till the knapsack is exactly full.

Therefore, it is clear from the above strategies that the Greedy method generates optimal solution if we select the objects with respect to their profit to weight ratios that means the object with maximum profit to weight ratio will be selected first. Let there are n objects and the object i is associated with

	profit piand weight wi. Then
	we can say that
	if
	p1
	³ p2
	³ LL ³ pn
	the solution

	x1 , x2 , x3 LL xn generated by
	
	
	w1
	w2
	w n

	
	greedy method is
	an
	optimal solution. The proof
	of the above

[image: image178.jpg]

[image: image179.jpg]

[image: image180.jpg]

statement is left as an exercise for the readers. The algorithm 6.1 describes the greedy method for finding the optimal solution for fractional knapsack problem.

AlgorithmFKNAPSACK (p, w, x, n, M)

// p[1:n] and w[1:n] contains the profit and weight of n objects. Mis the maximum capacity of knapsack and x[1:n] in the solution vector.//

{

for (i = 1; i<= n; i ++)

x[i] = 0 ;
// initialize the solution to 0 //

cu = M
// cu is the remaining capacity of the knapsack//

for (i =1; i<= n ; i ++){

if(w[i] >cu)

break;

else{

x[i] = 1 ;

cu = cu – w[i] ;

}

}

if(i<= n){

x[i] = cu/w[i] ;

returnx;

}

[image: image181.jpg]

Algorithm 1. Greedy algorithm for fractional knapsack problem.

Minimum Cost Spanning Tree

Let G = (V, E) be the graph where V is the set of vertices, E is the set of edges and |V|= n. The spanning tree G= (V, E) is a sub graph of G in which all the vertices of graph G are connected with minimum number of edges. The minimum number of edges required to correct all the vertices of a graph G in n – 1. Spanning tree plays a very important role in designing efficient algorithms.

Let us consider a graph shown in Fig 6.6(a). There are a number of possible spanning trees that is shown in Fig 6.6(b).

If we consider a weighted graph then all the spanning trees generated from the graph have different weights. The weight of the spanning tree is the sum of its edges weights. The spanning tree with minimum weight is called minimum spanning tree (MST). Fig. 6.7 shows a weighted graph and the minimum spanning tree.

A greedy method to obtain the minimum spanning tree would construct the tree edge by edge, where each edge is chosen accounting to some optimization criterion. An obvious criterion would be to choose an edge which adds a minimum weight to the total weight of the edges selected so far. There are two ways in which this criterion can be achieved.

1. The set of edges selected so far always forms a tree, the next edge to be added is such that not only it adds a minimum weight, but also forms a tree with the previous edges; it can be shown that the algorithm results in a minimum cost tree; this algorithm is called Prim’s algorithm.

2. The edges are considered in non decreasing order of weight; the set T of edges at each stage is such that it is possible to complete T into a tree; thus T may not be a tree at all stages of the algorithm; this also results in a minimum cost tree; this algorithm is called Kruskal’s algorithm.

Prim’s Algorithm
This algorithm starts with a tree that has only one edge, the minimum weight edge. The edges (j, q) is added one by one such that node j is already included, node q is not included and weight wt(j, q) is the minimum amongst all the edges (x, y) for which x is in the tree and yis not. In order to execute this algorithm efficiently, we have a node index near(j) associated with each node j that is not yet included in the tree. If a node is included in the tree, near(j) = 0. The node near(j) is selected into the tree such that wt(j, near(j)) in the minimum amongst all possible choices for near(j).

[image: image182.jpg]

AlgorithmPRIM (E, wt, n, T)

//E is the set of edges, wt(n, n) is the weight adjacency matrix for G, n is the number of nodes and T(n–1, 2) stores the spanning tree.

{

(k, l) = edge with minimum wt.

minwt = wt[k, l] ;

T[1, 1] = k, T[1, 2] = l ;

for(i = 1; i<=n; i++){

if(wt[i, k] <wt [i, l])

near[i] = k;

else

near[i] = l;

}

near[k] = near[l] = 0;

for(i = 2; i£=n-1 ; i++)

{

letj be an index such that near[j] ¹ 0 and wt[j, near[j]] is minimum.

T[i, 1] = j; T[i, 2] = near[j];

minwt = minwt + wt[j, near[j]] ;

near[j] = 0 ;

for(k = 1; k<= n ; k++){

if (near[k] ¹ 0 and wt[k, near[k]] >wt[k, j])

near[k] = j;

if(minwt == ∞)

print(“No spanning tree”); returnminwt;

}

Algorithm 4. Prim’s algorithm for finding MST.

Fig 6. The weighted undirected graph to illustrate Prim’s algorithm

Let us consider the weighted undirected graph shown in Fig.6.8 and the objective is to construct a minimum spanning tree. The step wise operation of Prim’s algorithm is described as follows.

Let us consider the weighted undirected graph shown in Fig.6.8 and the objective is to construct a minimum spanning tree. The step wise operation of Prim’s algorithm is described as follows.

	Step 1
	The minimum weight edge is (2, 3) with weight 5. Hence, the edge (2, 3) is added to the tree.

	
	near(2) and near(3) are set 0.

	Step 2
	Find near of all the nodes that are not yet selected into the tree and its cost.

	
	near(1) = 2
	weight = 16

	
	near(4) = 2
	weight = 6

	
	near (5) = -
	weight = ∞

	
	near (6) = 2
	weight = 11

	
	The node 4 is selected and the edge (2, 4) is added to the tree because

	
	weight(4, near(4)) is minimum. Then near(4) is set 0.

Step 3

near(1) = 2

weight = 16

near(5) = 4

weight = 18

near(6) = 2

weight = 11

As weight(6, near(6)) is minimum, the node 6 is selected and edge (2, 6) is added to the tree. So

near(6) is set 0

Step 4

near (1) = 2

weight = 16

near (5) = 4

weight = 18

Next, the edge (2, 1) is added to the tree as weight(1, near(1)) is minimum. So near(1) is set 0.

Step 5
near (5) = 1
weight 12

The edge (1, 5) is added to the tree. The Fig. 6.9(a) to 6.9(e) show the step wise construction of MST by Prim’s algorithm.

Fig. 6.9 Step wise construction of MST by Prim’s algorithm

Time complexity of Prim’s Algorithm

Prim’s algorithm has three for loops. The first for loop finds the near of all nodes which require O(n) time. The second for loop is to find the remaining n-2 edges and the third for loop updates near of each node after adding a vertex to MST. Since the third for loop is within the second for loop, it requires O(n2) time. Hence, the overall time complexity of Prim’s algorithm is O(n2).

Kruskal’s Algorithm

This algorithm starts with a list of edges sorted in non decreasing order of weights. It repeatedly adds the smallest edge to the spanning tree that does not create a cycle. Initially, each vertex is in its own tree in the forest. Then, the algorithm considers each edge ordered by increasing weights. If the edge (u, v) connects two different trees, then (u, v) is added to the set of edges of the MST and two trees connected by an edge (u, v) are merged in to a single tree. If an edge (u, v) connects two vertices in the same tree, then edge (u, v) is discarded.

The Krushal’s algorithm for finding the MST is presented as follows. It starts with an empty set A, and selects at every stage the shortest edge that has not been chosen or rejected regardless of where this edge is situated in the graph. The pseudo code of Kruskal’s algorithm is given in Algorithm .

The operations an disjoint sets used for Krushal’s algorithm is as follows:
Make_set(v)
: create a new set whose only member is pointed to v.

Find_set(v)
: returns a pointer to the set containing v.

Union(u, v) : unites the dynamic sets that contain u and v into a new set that is union of these two sets.

[image: image183.jpg]

AlgorithmKRUSKAL (V, E, W)

// V is the set of vertices, E is the set of edges and W is the adjacency matrix to store the weights of the links. //

{

A =  ;

for (each vertex u in V)

Make_set(u)

Create a min heap from the weights of the links using procedure heapify.

for (each least weight edge (u, v) in E) // least weight edge is the root of the heap// if (Find_set(u) ¹Find_set(v)){ // u and v are in two different sets //

A = AÈ{u, v}

Union(u, v)

}

}

return A ;

}

[image: image184.jpg]— —— Y —f——)

—_——a —_——z

Algorithm. 5 Kruskal’s algorithm for finding MST.

Time complexity of Kruskal’s Algorithm

The Kruskal’s algorithm first creates n trees from n vertices which is done in O(n) time. Then, a heap is created in O(n) time using heapify procedure. The least weight edge is at the root of the heap. Hence, the edges are deleted one by one from the heap and either added to the MST or discarded if it forms a cycle. This deletion process requires O(nlog2n).

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Dynamic Programming

Introduction

The Dynamic Programming (DP) is the most powerful design technique for solving optimization problems. It was invented by mathematician named Richard Bellman inn 1950s. The DP in closely related to divide and conquer techniques, where the problem is divided into smaller sub-problems and each sub-problem is solved recursively. The DP differs from divide and conquer in a way that instead of solving sub-problems recursively, it solves each of the sub-problems only once and stores the solution to the sub-problems in a table. The solution to the main problem is obtained by the solutions of these sub-problems.

The steps of Dynamic Programming technique are:

· Dividing the problem into sub-problems: The main problem is divided into smaller sub-problems. The solution of the main problem is expressed in terms of the solution for the smaller sub-problems.
· Storing the sub solutions in a table: The solution for each sub-problem is stored in a table so that it can be referred many times whenever required.
· Bottom-up computation: The DP technique starts with the smallest problem instance and develops the solution to sub instances of longer size and finally obtains the solution of the
original problem instance.

The strategy can be used when the process of obtaining a solution of a problem can be viewed as a sequence of decisions. The problems of this type can be solved by taking an optimal sequence of decisions. An optimal sequence of decisions is found by taking one decision at a time and never making an erroneous decision. In Dynamic Programming, an optimal sequence of decisions is arrived at by using the principle of optimality. The principle of optimality states that whatever be the initial state and decision, the remaining decisions must constitute an optimal decision sequence with regard to the state resulting form the first decision.

A fundamental difference between the greedy strategy and dynamic programming is that in the greedy strategy only one decision sequence is generated, wherever in the dynamic programming, a number of them may be generated. Dynamic programming technique guarantees the optimal solution for a problem whereas greedy method never gives such guarantee.

Reliability Design Problem

In this section, we present the dynamic programming approach to solve a problem with multiplicative constraints. Let us consider the example of a computer return in which a set of nodes are connected with each other. Let ri be the reliability of a node i.e. the probability at which the node forwards the packets correctly in ri. Then the reliability of the path connecting from one node s to

k

another node d is ri where k is the number of intermediate node. Similarly, we can also consider a

i 1

system with n devices connected in series, where the reliability of device i is ri. The reliability of the

k

system is ri . For example if there are 5 devices connected in series and the reliability of each device

i 1

is 0.99 then the reliability of the system is 0.99  0.99 0.99 0.99  0.99=0.951. Hence, it is desirable to connect multiple copies of the same devices in parallel through the use of switching circuits. The switching circuits determine the devices in any group functions properly. Then they make use of one such device at each stage.

Let mi be the number of copies of device Di in stage i. Then the probability that all mi have malfunction i.e. (1-ri)mi.Hence, the reliability of stage i becomes 1-(1-ri)mi . Thus, if ri =0.99 and mi=2, the reliability of stage i is 0.9999. However, in practical situations it becomes less because the switching circuits are not fully reliable. Let us assume that the reliability of stage i in  i(mi), i≤n. Thus the reliability

k

of the system is i (mi) .

i 1

Fig. 7.9

The reliability design problem is to use multiple copies of the devices at each stage to increase reliability. However, this is to be done under a cost constraint. Let ci be the cost of each unit of device Di and let c be the cost constraint. Then the objective is to maximize the reliability under the condition that the total cost of the system mici will be less than c.

Mathematically, we can write

maximize i (mi)

1i 

subject to ∑ci mi £ c

1i n

mi ³ 1 and 1 £ i £ n .

We can assume that each ci>0 and so each mi must be in the range 1 £ mi £ ui , where

	c +
	∑ c
	
	

	
	
	n
	
	

	
	j =1 and j ¹i
	j

	ui =
	
	
	
	.

	
	
	ci
	
	

	
	
	
	

	
	
	
	

The dynamic programming approach finds the optimal solution m1,m2…mn. An optimal sequence of decision i.e. a decision for each mi can result an optimal solution.

n

Let fn(c) be the maximum reliability of the system i.e. maximum i (mi) , subject to the constraint

	
	i 1

	∑ci mi £ c and
	1 £ mi £ xi , 1  i  n . Let we take a decision on the value of mn from {1,2… un}. Then

	1i n
	the remaining mn 1  i  n can be chosen in such a way that mi  for

	the value of
	

1  i  n  n 1 can be maximized under the cost constraint c-cnmn. Thus the principle of optimality

	holds and we can write
	

	fn(c)= max j mj f j -1 x - mj c j 
	(8.1)

	1£mn £un
	

	We can generalized the equation 8.1 and we can write
	

	fj(x)= max  j m j f j 1 x  m j c j 
	(8.2)

	1m j u j
	

It is clear that f0(x)=1 for all x, 0  x  c . Let Si consists of tuples of the form (f,x) where f = fi(x). There is atmost one tuple for each different x that remits from a sequence of decisions on m1,m2…mn. If there are two tuples (f1,x1) and (f2,x2) such that f1 ≥ f2 and x1≤ x2 then (f2,x2) is said to be dominated tuple and discarded from Si.

Let us design a three stage system with devices D1,D2 and D3. The costs are Rs 30,Rs 15 and Rs 20 respectively. The cost constraint of the system is Rs 105. The reliability of the devices are 0.9, 0.8 and 0.5

respectively. If stage i has mi devices in parallel then mi   1  1  ri mi . We can write c1=30, c2

=15,c3=20, c=105, r1=0.9, r2=0.8 and r3=0.5. We can calculate the value of ui, for 1  i  3

	
	105  15  20
	70
	

	x1
	
	
	
	
	
	
	
	
	
	
	
	
	 2

	
	
	
	
	30
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	30
	
	

	x
	
	105  30  20
	
	
	55
	
	 3

	
	
	
	
	
	
	
	
	

	2
	
	15
	
	
	
	
	
	
	

	
	
	
	
	
	
	15
	

	x
	
	105  30 15
	
	
	60
	
	 3

	
	
	
	
	
	
	
	

	3
	
	20
	
	
	
	
	

	
	
	
	
	
	20
	
	

Then we start with S0={(1,0)}. We can obtain each Si from Si-1 by trying out all possible values for mi and combining the resulting tuples together.

	S1
	={(0.9,30)}
	S1
	={(0.99,60)}
	S1 ={(0.9,30),(0.99,60)}

	1
	
	2
	
	

Considering 1 device at stage q, we can write S12 as follows

S12 ={(0.9 0.8,30+15),(0.99 0.8,60+15)}

={(0.72,45),(0.792,75)}

Considering 2 devices of D2 in stage 2, we can compute the reliability at stage 2

2 m2 =1-(1-0.8)2=0.96 cost at stage 2=2 15=30 Hence, we can write

S22 ={(0.9 0.96,30+30),(0.99 0.96,60+30)} ={(0.864,60),(0.9504,90)}

The tuple (0.9504, 90) is removed as it left only Rs 15 and the maximum cost of the third stage is 20. Now, we can consider 3 devices of D2 in stage 2 and compute the reliability at stage 2 is

2 m2 =1-(1-0.8)3=1-0.008=0.992.

Hence, we can write

S32 ={(0.9 0.992,30+45),(0.99  0.992,60+45)}

={(0.8928,75),(0.98208,105)}

The tuple (0.98208,105) is discarded as there is no cost left for stage 3. Combining S12 , S22 and S32 , we get

S 2 ={(0.72,45),(0.792,75),(0.864,60),(0.8928,75)}

The tuple (0.792,75) is discarded from S 2 as it is dominated by (0.864,60).

Now, we can compute S13 assuming 1 device at stage 3.

S13 ={(0.72 0.5,45+20),(0.864  0.5,60+20),(0.8928 0.5,75+20)}

={(0.36,65),(0.432,80),(0.4464,95)}

If there are 2 devices at stage 3, then

3 m3 =(1-(1-0.5)2)=0.75

We can write S23 as follows

S23 ={(0.72 0.75,45+40),(0.864 0.75,60+40),(0.8928 0.75,75+40)}

={(0.54,85),(0.648,100)} (tuple(0.8928  0.75,115) is discarded as cost constraint is 105).

If there are 3 devices at stage 3 then

3 m3 =(1-(1-0.5)3)=1-0.125=0.875

Hence, we can write S33 ={(0.72 0.875,45+60)}={(0.63,105)}

Combining S13 , S23 and S33 we can write S3 discarding the dominant tuples ass given below

S3={(0.36,65),(0.432,80),(0.54,85),(0.648,100)}

The best design has the reliability 0.648 and a cost of 100. Now, we can track back to find the number of devices at each stage. The tuple(0.648,100) is taken from S23 that is with 2 devices at stage 2. Thus m3=2. The tuple (0.648,100) was derived from the tuple (0.864,60) taken from S22 and computed with considering 2 devices at stage 2. Thus m2=2. The tuple (0.864,60) is derived from the tuple (0.9,30) taken from S11 computed with 1 device at stage 1. Thus m1=1.

Multistage Graphs

A multistage graph is a graph

· G=(V,E) with V partitioned into K >= 2 disjoint subsets such that if (a,b) is in E, then a is in Vi , and b is in Vi+1 for some subsets in the partition;

· and | V1 | = | VK | = 1.

The vertex s in V1 is called the source; the vertex t in VK is called the sink.

G is usually assumed to be a weighted graph.

The cost of a path from node v to node w is sum of the costs of edges in the path.

The "multistage graph problem" is to find the minimum cost path from s to t.

[Cf. the "network flow problem".]

Each set Vi is called a stage in the graph.

Consider the resource allocation problem:

Given n units of resources to be allocated to k projects.

For 1 <= i <= k, 0 <= j <= n,

P(i,j) = profit obtained by allocating "j" units of

the resource to project i.

Transform this to instance of "multistage graph problem".

Create a multistage graph:

 V = {s} and denote s = V(1,0) -- read, we are at node 1 having

 0 allocated 0 units of resource

Stages 1 to k are such that stage i consists of a set:

 { V(i+1,j) } j=0 .. n

 [we could denote the vertices in this set as: vi+1j
 [or could instead call them vj of set Vi]

The edges are weighted with C(i,j) = -P(i,j) [the negative of the profit] to make it a minimization problem.

Dynamic Programming solution:

Let path(i,j) be some specification of the minimal path from vertex j in set i to vertex t; C(i,j) is the cost of this path;c(j,t) is the weight of the edge from j to t.

 C(i,j) = min { c(j,l) + C(i+1,l) }

 l in Vi+1
 (j,l) in E

To write a simple algorithm, assign numbers to the vertices so those in stage Vi have lower number those in stage Vi+1.

int[] MStageForward(Graph G)

{

 // returns vector of vertices to follow through the graph

 // let c[i][j] be the cost matrix of G

 int n = G.n (number of nodes);

 int k = G.k (number of stages);

 float[] C = new float[n];

 int[] D = new int[n];

 int[] P = new int[k];

 for (i = 1 to n) C[i] = 0.0;

 for j = n-1 to 1 by -1 {

 r = vertex such that (j,r) in G.E and c(j,r)+C(r) is minimum

 C[j] = c(j,r)+C(r);

 D[j] = r;

 }

 P[1] = 1; P[k] = n;

 for j = 2 to k-1 {

 P[j] = D[P[j-1]];

 }

 return P;

}
UNIT-III
Introduction To Backtracking

What is Back​track​ing Programming?
Recur​sion is the key in back​track​ing pro​gram​ming. As the name sug​gests we back​track to find the solu​tion. We start with one pos​si​ble move out of many avail​able moves and try to solve the prob​lem if we are able to solve the prob​lem with the selected move then we will print the solu​tion else we will back​track and select some other move and try to solve it. If none if the moves work out we will claim that there is no solu​tion for the problem.
N-Queens Problem

Objec​tive : In chess, a queen can move as far as she pleases, hor​i​zon​tally, ver​ti​cally, or diag​o​nally. A chess board has 8 rows and 8 columns. The stan​dard 8 by 8 Queen’s prob​lem asks how to place 8 queens on an ordi​nary chess board so that none of them can hit any other in one move.(Source: http://www.math.utah.edu/~alfeld/queens/queens.html)

Here we are solv​ing it for N queens in NxN chess board.

Approach: In this approach we will see the basic solu​tion with O(N^2) extra space we will improve it fur​ther to O(N) space.

· Cre​ate a solu​tion matrix of the same struc​ture as chess board.

· When​ever place a queen in the chess board, mark that par​tic​u​lar cell in solu​tion matrix.

· At the end print the solu​tion matrix, the marked cells will show the posi​tions of the queens in the chess board.

Algo​rithm:

1. Place the queens col​umn wise, start from the left most column

2. If all queens are placed.

1. return true and print the solu​tion matrix.

3. Else

1. Try all the rows in the cur​rent column.

2. Check if queen can be placed here safely if yes mark the cur​rent cell in solu​tion matrix as 1 and try to solve the rest of the prob​lem recursively.

3. If plac​ing the queen in above step leads to the solu​tion return true.

4. If plac​ing the queen in above step does not lead to the solu​tion ,BACKTRACK, mark the cur​rent cell in solu​tion matrix as 0 and return false.

4. If all the rows are tried and noth​ing worked, return false and print NOSOLUTION.

Bet​ter Solu​tion: If you notice in solu​tion matrix, at every row we have only one entry as 1 and rest of the entries are 0. Solu​tion matrix takes O(N2) space. We can reduce it to O(N). We will solve it by tak​ing one dimen​sional array and con​sider solution[1] = 2 as “Queen at 1st row is placed at 2nd col​umn. Com​plete Code:
	
	public class NQueensBT {

	
	
public int[][] solution;

	
	

	
	
public NQueensBT(int N) {

	
	

solution = new int[N][N];

	
	

for (int i = 0; i < N; i++) {

	
	

for (int j = 0; j < N; j++) {

	
	

solution[i][j] = 0;

	
	

}

	
	

}

	
	
}

	
	

	
	
public void solve(int N) {

	
	

if(placeQueens(0, N)){

	
	

//print the result

	
	

for (int i = 0; i < N; i++) {

	
	

for (int j = 0; j < N; j++) {

	
	

System.out.print(" " + solution[i][j]);

	
	

}

	
	

System.out.println();

	
	

}

	
	

}else{

	
	

System.out.println("NO SOLUTION EXISTS");

	
	

}

	
	
}

	
	

	
	
public boolean placeQueens(int queen, int N) {

	
	

// will place the Queens one at a time, for column wise

	
	

if(queen==N){

	
	

//if we are here that means we have solved the problem

	
	

return true;

	
	

}

	
	

for (int row = 0; row < N; row++) {

	
	

// check if queen can be placed row,col

	
	

if (canPlace(solution, row, queen)) {

	
	

// place the queen

	
	

solution[row][queen] = 1;

	
	

// solve for next queen

	
	

if(placeQueens(queen+1, N)){

	
	

return true;

	
	

}

	
	

//if we are here that means above placement didn't work

	
	

//BACKTRACK

	
	

solution[row][queen]=0;

	
	

}

	
	

}

	
	

//if we are here that means we haven't found solution

	
	

return false;

	
	

	
	
}

	
	

	
	
// check if queen can be placed at matrix[row][column]

	
	
public boolean canPlace(int[][] matrix, int row, int column) {

	
	

// since we are filling one column at a time,

	
	

// we will check if no queen is placed in that particular row

	
	

for (int i = 0; i < column; i++) {

	
	

if (matrix[row][i] == 1) {

	
	

return false;

	
	

}

	
	

}

	
	

// we are filling one column at a time,so we need to check the upper and

	
	

// diagonal as well

	
	

// check upper diagonal

	
	

for (int i = row, j = column; i >= 0 && j >= 0; i--, j--) {

	
	

if (matrix[i][j] == 1) {

	
	

return false;

	
	

}

	
	

}

	
	

	
	

// check lower diagonal

	
	

for (int i = row, j = column; i < matrix.length && j >= 0; i++, j--) {

	
	

if (matrix[i][j] == 1) {

	
	

return false;

	
	

}

	
	

}

	
	

// if we are here that means we are safe to place Queen at row,column

	
	

return true;

	
	
}

	
	

	
	
public static void main(String[] args) {

	
	

int N = 4;

	
	

NQueensBT q = new NQueensBT(N);

	
	

q.solve(N);

	
	

	
	
}

	

	

Graph Coloring Problem
In graph theory, graph coloring is a special case of graph labeling; it is an assignment of labels traditionally called "colors" to elements of a graph subject to certain constraints. In its simplest form, it is a way of coloring the vertices of a graph such that no two adjacent vertices share the same color; this is called a vertex coloring.

The most obvious solution to this problem is arrived at through a design referred to as backtracking.
Recall that the essence of backtracking is:

1. Number the solution variables [v0 v1, …, vn-1].

2. Number the possible values for each variable [c0 c1, …, ck-1].

3. Start by assigning c0 to each vi.

4. If we have an acceptable solution, stop.

5. If the current solution is not acceptable, let i = n-1.

6. If i < 0, stop and signal that no solution is possible.

7. Let j be the index such that vi = cj. If j < k-1, assign cj+1 to vi and go back to step 4.

8. But if j ≥ k-1, assign c0 to vi, decrement i, and go back to step 6.

Although this approach will find a solution eventually (if one exists), it isn't speedy. Backtracking over n variables, each of which can take on k possible values, isO(kn).

For graph coloring, we will have one variable for each node in the graph. Each variable will take on any of the available colors.

Basic Traversal and Search Techniques

Traversal of graphs and digraphs

To traverse means to visit the vertices in some systematic order. You should be familiar with various traversal methods for trees:
preorder: visit each node before its children.
postorder: visit each node after its children.
inorder (for binary trees only): visit left subtree, node, right subtree.

We also saw another kind of traversal, topological ordering, when I talked about shortest paths.

Today, we'll see two other traversals: breadth first search (BFS) and depth first search (DFS). Both of these construct spanning trees with certain properties useful in other graph algorithms. We'll start by describing them in undirected graphs, but they are both also very useful for directed graphs.

Breadth First Search

This can be throught of as being like Dijkstra's algorithm for shortest paths, but with every edge having the same length. However it is a lot simpler and doesn't need any data structures. We just keep a tree (the breadth first search tree), a list of nodes to be added to the tree, and markings (Boolean variables) on the vertices to tell whether they are in the tree or list.
breadth first search:
 unmark all vertices

 choose some starting vertex x

 mark x

 list L = x

 tree T = x

 while L nonempty

 choose some vertex v from front of list

 visit v

 for each unmarked neighbor w

 mark w

 add it to end of list

 add edge vw to T

It's very important that you remove vertices from the other end of the list than the one you add them to, so that the list acts as a queue (fifo storage) rather than a stack (lifo). The "visit v" step would be filled out later depending on what you are using BFS for, just like the tree traversals usually involve doing something at each vertex that is not specified as part of the basic algorithm. If a vertex has several unmarked neighbors, it would be equally correct to visit them in any order. Probably the easiest method to implement would be simply to visit them in the order the adjacency list for v is stored in.
Let's prove some basic facts about this algorithm. First, each vertex is clearly marked at most once, added to the list at most once (since that happens only when it's marked), and therefore removed from the list at most once. Since the time to process a vertex is proportional to the length of its adjacency list, the total time for the whole algorithm is O(m).

Next, let's look at the tree T constructed by the algorithm. Why is it a tree? If you think of each edge vw as pointing "upward" from w to v, then each edge points from a vertex visited later to one visited earlier. Following successive edges upwards can only get stopped at x (which has no edge going upward from it) so every vertex in T has a path to x. This means that T is at least a connected subgraph of G. Now let's prove that it's a tree. A tree is just a connected and acyclic graph, so we need only to show that T has no cycles. In any cycle, no matter how you orient the edges so that one direction is "upward" and the other "downward", there is always a "bottom" vertex having two upward edges out of it. But in T, each vertex has at most one upward edge, so T can have no cycles. Therefore T really is a tree. It is known as a breadth first search tree.

We also want to know that T is a spanning tree, i.e. that if the graph is connected (every vertex has some path to the root x) then every vertex will occur somewhere in T. We can prove this by induction on the length of the shortest path to x. If v has a path of length k, starting v-w-...-x, then w has a path of length k-1, and by induction would be included in T. But then when we visited w we would have seen edge vw, and if v were not already in the tree it would have been added.

Breadth first traversal of G corresponds to some kind of tree traversal on T. But it isn't preorder, postorder, or even inorder traversal. Instead, the traversal goes alevel at a time, left to right within a level (where a level is defined simply in terms of distance from the root of the tree). For instance, the following tree is drawn with vertices numbered in an order that might be followed by breadth first search:

 1

 / | \

 2 3 4

 / \ |

 5 6 7

 | / | \

 8 9 10 11

The proof that vertices are in this order by breadth first search goes by induction on the level number. By the induction hypothesis, BFS lists all vertices at level k-1 before those at level k. Therefore it will place into L all vertices at level k before all those of level k+1, and therefore so list those of level k before those of level k+1. (This really is a proof even though it sounds like circular reasoning.)
Breadth first search trees have a nice property: Every edge of G can be classified into one of three groups. Some edges are in T themselves. Some connect two vertices at the same level of T. And the remaining ones connect two vertices on two adjacent levels. It is not possible for an edge to skip a level.

Therefore, the breadth first search tree really is a shortest path tree starting from its root. Every vertex has a path to the root, with path length equal to its level (just follow the tree itself), and no path can skip a level so this really is a shortest path.

Breadth first search has several uses in other graph algorithms, but most are too complicated to explain in detail here. One is as part of an algorithm for matching, which is a problem in which you want to pair up the n vertices of a graph by n/2 edges. If you have a partial matching, pairing up only some of the vertices, you can extend it by finding an alternating path connecting two unmatched vertices; this is a path in which every other edge is part of the partial matching. If you remove those edges in the path from the matching, and add the other path edges back into the matching, you get a matching with one more edge. Alternating paths can be found using a version of breadth first search.

A second use of breadth first search arises in certain pattern matching problems. For instance, if you're looking for a small subgraph such as a triangle as part of a larger graph, you know that every vertex in the triangle has to be connected by an edge to every other vertex. Since no edge can skip levels in the BFS tree, you can divide the problem into subproblems, in which you look for the triangle in pairs of adjacent levels of the tree. This sort of problem, in which you look for a small graph as part of a larger one, is known as subgraph isomorphism. In a recent paper, I used this idea to solve many similar pattern-matching problems in linear time.

Depth first search

Depth first search is another way of traversing graphs, which is closely related to preorder traversal of a tree. Recall that preorder traversal simply visits each node before its children. It is most easy to program as a recursive routine:
 preorder(node v)

 {

 visit(v);

 for each child w of v

 preorder(w);

 }

To turn this into a graph traversal algorithm, we basically replace "child" by "neighbor". But to prevent infinite loops, we only want to visit each vertex once. Just like in BFS we can use marks to keep track of the vertices that have already been visited, and not visit them again. Also, just like in BFS, we can use this search to build a spanning tree with certain useful properties.
 dfs(vertex v)

 {

 visit(v);

 for each neighbor w of v

 if w is unvisited

 {

 dfs(w);

 add edge vw to tree T

 }

 }

The overall depth first search algorithm then simply initializes a set of markers so we can tell which vertices are visited, chooses a starting vertex x, initializes tree T to x, and calls dfs(x). Just like in breadth first search, if a vertex has several neighbors it would be equally correct to go through them in any order. I didn't simply say "for each unvisited neighbor of v" because it is very important to delay the test for whether a vertex is visited until the recursive calls for previous neighbors are finished.
The proof that this produces a spanning tree (the depth first search tree) is essentially the same as that for BFS, so I won't repeat it. However while the BFS tree is typically "short and bushy", the DFS tree is typically "long and stringy".

Just like we did for BFS, we can use DFS to classify the edges of G into types. Either an edge vw is in the DFS tree itself, v is an ancestor of w, or w is an ancestor of v. (These last two cases should be thought of as a single type, since they only differ by what order we look at the vertices in.) What this means is that if v and w are in different subtrees of v, we can't have an edge from v to w. This is because if such an edge existed and (say) v were visited first, then the only way we would avoid adding vw to the DFS tree would be if w were visited during one of the recursive calls from v, but then v would be an ancestor of w.

As an example of why this property might be useful, let's prove the following fact: in any graph G, either G has some path of length at least k. or G has O(kn) edges.

Proof: look at the longest path in the DFS tree. If it has length at least k, we're done. Otherwise, since each edge connects an ancestor and a descendant, we can bound the number of edges by counting the total number of ancestors of each descendant, but if the longest path is shorter than k, each descendant has at most k-1 ancestors. So there can be at most (k-1)n edges.

Tree Traversals

Unlike linear data structures (Array, Linked List, Queues, Stacks, etc) which have only one logical way to traverse them, trees can be traversed in different ways. Following are the generally used ways for traversingtrees

[image: image93.png]

Example Tree

 (a) Inorder (Left, Root, Right) : 4 2 5 1 3
(b) Preorder (Root, Left, Right) : 1 2 4 5 3
(c) Postorder (Left, Right, Root) : 4 5 2 3 1

Breadth First or Level Order Traversal : 1 2 3 4 5
Please see this post for Breadth First Traversal.

Inorder Traversal:
Algorithm Inorder(tree)

 1. Traverse the left subtree, i.e., call Inorder(left-subtree)

 2. Visit the root.

 3. Traverse the right subtree, i.e., call Inorder(right-subtree)

Example: Inorder traversal for the above given figure is 4 2 5 1 3.

Practice Inorder Traversal

Preorder Traversal:
Algorithm Preorder(tree)

 1. Visit the root.

 2. Traverse the left subtree, i.e., call Preorder(left-subtree)

 3. Traverse the right subtree, i.e., call Preorder(right-subtree)

Example: Preorder traversal for the above given figure is 1 2 4 5 3.

Postorder Traversal:
Algorithm Postorder(tree)

 1. Traverse the left subtree, i.e., call Postorder(left-subtree)

 2. Traverse the right subtree, i.e., call Postorder(right-subtree)

 3. Visit the root.

Example: Postorder traversal for the above given figure is 4 5 2 3 1.

Bi connected graphs　
	· Articulation point: An Articulation point in a connected graph is a vertex that, if delete, would break the graph into two or more pieces (connected component).
· Biconnected graph: A graph with no articulation point called biconnected. In other words, a graph is biconnected if and only if any vertex is deleted, the graph remains connected.
· Biconnected component: A biconnected component of a graph is a maximal biconnected subgraph- a biconnected subgraph that is not properly contained in a larger biconnected subgraph.
· A graph that is not biconnected can divide into biconnected components, sets of nodes mutually accessible via two distinct paths.
	　
　[image: image94.jpg]

[image: image95]

	[Example] Graph G in Figure 1:
· Articulation points: A, H, G, J
· Biconnected components: {A, C, G, D, E, F}、{G, J, L, B}、B、H、I、K
　

	 How to find articulation points?

	[image: image96.png]back edges
— tree edges

Figure 2. Depth-first panning tree of the graph G
	[Step 1.]
	Find the depth-first spanning tree T for G

	
	[Step 2.]
	Add back edges in T

	
	[Step 3.]
	Determine DNF(i) and L(i)
 DNF(i): the visiting sequence of vertices i by depth first search
 L(i): the least DFN reachable frome i through a path consisting of zero or more tree edges followed by zero or one back edge

	
	[Step 4.]
	Vertex i is an articulation point of G if and only if eather:
 i is the root of T and has at least two children
 i is not the root and has a child j for which L(j)>=DFN(i)

　
	[Example] The DFN(i) and L(i) of Graph G in Figure 1 are:
[image: image97.png]

 Vertex G is an articulation point because G is not the root and in depth-first spanning tree in Figure 2, L(L)>=DFN(G), that L is one of its children
 Vertex A is an articulation point because A is the root and in depth-first spanning tree in Figure 2, it has more than one child, B and F
 Vertex E is not an articulation point because E is not the root and in depth-first spanning tree in Figure 2, L(G)<DFN(E) and L(D)<DFN(E), that G and D are its children

　
UNIT-IV

THE BRANCH-AND-BOUND APPROACH

Problem Statement

Branch-and-bound is an approach developed for solving discrete and combinatorial optimization problems. The discrete optimization problems are problems in which the decision variables assume discrete values from a specified set; when this set is set of integers, we have an integer programming problem. The combinatorial optimization problems, on the other hand, are problems of choosing the best combination out of all possible combinations. Most combinatorial problems can be formulated as integer programs

The major difficulty with these problems we do not have any optimality conditions to check if a given (feasible) solution is optimal or not. For example, in linear programming we do have an optimality condition: when you give me a candidate solution, I'll check if there exists an "improving feasible direction" to move, if there isn't, then your solution is optimal. If I can find a direction to move that results in a better solution, then your solution is not optimal. There is no such global optimality conditions in discrete or combinatorial optimization problems. In order to guarantee a given feasible solution's optimality is "to compare" it with every other feasible solution. To do this explicitly, amounts to total enumerationof all possible alternatives which is computationally prohibitive due to the NP-Completeness of integer programming problems. Therefore, this comparison must be done implicitly, resulting in partial enumeration of all possible alternatives.

As an example consider the following problem from machine scheduling. We have n jobs each of which can be processed either on machine 1 or machine 2. But the processing times may differ depending on the machine the job is to be processed. Suppose we have four jobs with the following processing times:

	
	Job 1
	Job 2
	Job 3
	Job 4

	Mach. 1
	4
	4
	3
	5

	Mach. 2
	2
	3
	4
	4

We would like to assign each job to a machine such that all the jobs are processed as soon as possible. In other words, we would like to minimize the completion time of the job that is processed last. In the machine scheduling literature this problem is referred to as the "minimizing the makespan in unrelated parallel machines" and denoted by R2||Cmax.

This problem has an integer programming formulation. If we define the decision variables as

	xj
	=
	1,
	if job j is assigned to machine 1, and

	
	=
	0,
	if job j is assigned to machine 2.

Then the following mixed integer program solves the above R2||Cmax problem:

	MIN z,
	
	

	SUBJECT TO:
	
	

	z
	> =
	4x1 + 4x2 + 3x3 + 5x4,

	z
	> =
	2(1 - x1) + 3(1 - x2) + 4(1 - x3) + 4(1 - x4),

	z
	> =
	0, xj = 0 or 1.

The right-hand-side of the first constraint is the time machine 1 completes processing, and the right-hand-side of the second constraint is the time machine 2 completes processing. Then z is the maximum of these completion times, which we would like to minimize.

If we were to explicitly enumerate all possible solutions, since we have n = 4 jobs and each job has two possibilities for assignment, either to machine one or to machine two, then there are 2n = 24 = 16 possible assignments. A systematic way to generate all these possible assignments is by means of a "total enumeration" tree, as shown below:

[image: image98.png]

The root node, Node 0, is where we start; no jobs yet are assigned to any machine. All the consecutive nodes that are created represent "partial schedules" in which a subset of jobs are assigned to machines; while the remaining jobs are yet to be assigned. At each "level" of the tree we assign one job to a machine. We start at the root node, Node 0; at level 1 we branch into two nodes, Node 1 and Node 2. Branching to Node 1, we set x1 = 1; that is, we assign job 1 to machine 1. In all the "descendents" of Node 1, that is Node 3 and Node 4, and their descendents, job 1 is assigned to machine 1. Proceeding in a similar fashion, at Node 3, we branch into two nodes, Node 7 and Node8. We assign job 2 to machine 1 (x2 = 1) at Node 7 and assign job 2 to machine 2 (x2 = 0) at Node 8.

Only the last nodes, so called "leaves" of the tree, (Node 15 through Node 30) represent full schedules. For example, Node 15 represents the schedule in which all jobs are assigned to machine 1 and no jobs are scheduled on machine 2, certainly not a sensible decision to make in our problem! Hence the role of the total enumeration tree is to systematically generate all possible solutions in a combinatorial problem.

In this small example with four jobs, it is possible to totally evaluate all 16 alternatives. But as the number of jobs, n, gets larger, the total number of alternatives, 2n, grows exponentially; making total enumeration computationally infeasible even for the fastest computers. It is clear that in most real life combinatorial problems we cannot explicitly enumerate all possible alternatives. Is it possible, then, to have a way to partially, or implicitly, enumerate the tree? In other words, is there a way to find the optimal solution, without exhaustively searching the entire tree? The branch-and-bound approach provides such a means for finding the optimal solution.

Solution to the Problem

The essence of the branch-and-bound approach is the following observation: in the total enumeration tree, at any node, if I can show that the optimal solution cannot occur in any of its descendents, then there is no need for me to consider those descendent nodes. Hence, I can "prune" the tree at that node. If I can prune enough branches of the tree in this way, I may be able to reduce it to a computationally manageable size. Note that, I am not ignoring those solutions in the leaves of the branches that I have pruned, I have left them out of consideration after I have made sure that the optimal solution cannot be at any one of these nodes. Thus, the branch-and-bound approach is not a heuristic, or approximating, procedure, but it is an exact, optimizing procedure that finds an optimal solution.

It is always possible to find a feasible solution to a combinatorial or discrete optimization problem. If available, one can use some heuristics to obtain, usually, a "reasonably good" solution. Let us call this solution the incumbent. Then at any node of the tree, if we can compute a "bound" on the best possible solution that can expected from any descendent of that node, we can compare the "bound" with the objective value of the incumbent. If what we have on hand, the incumbent, is better than what we can ever expect from any solution resulting from that node, then it is safe to stop branching from that node. In other words, we can discard that part of the tree from further consideration.

Let us try to clarify these concepts in the context of the above example. Recall that in this example, we are trying to minimize the make span of four jobs on two (unrelated) parallel machines. Let us find a feasible solution, the incumbent, using a heuristic. Suppose our heuristic assigns job 1 to machine 1, job 2 to machine 2, job 3 to machine 1, and job 4 to machine 2 (using the previously introduced notation: x1 = 1, x2 = 0, x3 = 1, and x4 = 0). Hence machine 1 completes its processing at 4x1 + 4x2 + 3x3 + 5x4 = 4(1)+4(0) + 3(1) + 5(0) = 7, and machine 2 at 2(1 - x1) + 3(1 - 2(1 - x1) + 3(1 - x2) + 4(1 -x3) + 4(1 - x4) = 2(1 - (1)) + 3(1 - (0)) + 4(1 - (1)) + 4(1 - (0)) = 7; resulting in a make span of z = MAX {7, 7} = 7. With this solution we can safely discard any part of the tree which we know it cannot result in solution better than this. What we need now is a way of computing a "lower bound" on the value of the make span when a partial schedule at an intermediate node is completed.

Consider the following very "loose" lower bound: the make span of "partial" schedule at node; assuming as if jobs not yet assigned will not contribute to the make span. For example at node 3, jobs 1 and 2 are assigned to machine 1 to be processed for 4 units of time each, and none of the other jobs yet assigned. Thus the make span of the (partial) schedule in this node is 8. In any descendent of this node, the make span of the corresponding (partial) schedule will be equal to (at best) or greater than (more likely) 8. But we already have a solution, the incumbent, with a make span of 7. Hence, we can prune the tree at this node, knowing that the optimal solution cannot be at any one of the nodes 15, 16, 17, or 18.

We can also prune the tree at node 14, whose lower bound is 9 which greater than our incumbent solution's make span of 7. From the above example two points should be clear: better ("tighter") the lower bound, the more we can prune off the tree, and regardless of the lower bounding scheme used, how much we can prune is highly data dependent. A same branch-and-bound procedure that behaves very well with a specific set of data, can do very poorly with a different set of data.

How well a branch-and-bound algorithm solves a specific discrete or a combinatorial optimization problem depends on how branching is going to take place and which bounding scheme is to be used. Starting at the root node, we partition the solution space of the problem. In the above example, at node 0 we partition the solution space, the set of all possible assignments, into two: all assignments in which job 1 is assigned to machine 1 is the partition (or the branch) denoted by node 1, and all assignments in which job 1 is assigned to machine 2 is the partition denoted by node 2. In different problems this partitioning or branching can take various forms. It is a major algorithm design issue to decide which one to use.

In order to compute a bound at a particular node, what we essentially do is to solve a relaxed problem. We do this by removing a number of complicating constraints. For instance, in integer programming a bound can be found by ignoring the integrality requirement on the variables and solving the problem as a linear program. The optimal objective function value of the linear program thus obtained, can never be worse than the case when integrality constraint is imposed on the decision variables. In the above machine scheduling example, we have used an "extreme" relaxation: we have simply ignored all the remaining jobs that are required to be assigned to one of the machines, resulting in a "loose" lower bound. In order to be able to prune more of the tree, thus having less alternatives to explicitly evaluate, we need to have tighter bounds. To be able to have a tighter bound, one has to solve the problem with minimal relaxation. (Tightest bound is obtained when one solves the problem as is, i.e. without any relaxation.) In order to have a tighter bound, we have to spend more computational effort at each node, but we need to evaluate fewer nodes, since we would have pruned most of the tree. On the other hand, if our bounding scheme results in not very tight bounds, we would not be able to prune much of the tree, thus having have to evaluate large number of the nodes -at the extreme all of the nodes in the tree, which is worse than total enumeration of all alternatives. How best one resolves this trade off is the indicator of the quality of the branch-and-bound algorithm designed for that specific problem.

Definitions:

· Branch and Bound is a state space search method in which all the children of a node are generated before expanding any of its children.

· Live-node: A node that has not been expanded.

· [image: image185.jpg]

It is similar to backtracking technique but uses BFS-like search.

[image: image186.jpg]O-notation

O(g(n)) = {f(n) : there exist positive constants ¢ and n such that
0 = f(n) < cg(n) foralln > no} .

cglm)

[image: image187.jpg]Example: 2n*> = O(n?), with ¢ = 1 and ny = 2.
Examples of functions in on?):

n2

n? +n

n? 4+ 1000n
10001 + 1000n
Also,

n

n/1000

111:99999

n?/1glglgn

Q-notation

Q(g(n)) = {f(n) : there exist positive constants ¢ and ny such that
0 <cg(n) < f(n) foralln > ng} .

Sim)

cg(n)

n

ny

g(n) is an asymptotic lower bound for f(n).

Example: /n = Q(Ign), withc = 1 and ny = 16.
Examples of functions in Q(n%):

2
n-

n*+n
ﬂ: - n
1000n% + 1000n
100072 — 1000n

Also,
3

n
nlOOOOI

n*lglglgn
2%

[image: image188.jpg]©-notation

O(g(n)) = {f(n) : there exist positive constants ¢, ¢,, and ng such that
0 < cig(n) < f(n) < cg(n) foralln = ny} .

ey8(n)

Am)

c,8(n)

My

g(n) is an asymptotically tight bound for f(n).

[image: image189.jpg]o-notation

0(g(n)) = {f(n) : for all constants ¢ > 0, there exists a constant
ng > Osuch that 0 < f(n) < cg(n) forall n > ng} .

Another view, probably easier to use: lim 202 — 0,

= g(n)

219 _ o(n?)
n*/lgn = o(n?)
n® # o(n?) (just like 2 # 2)
n%/1000 # o(n®)

w-notation

w(g(n)) = {f(n) : for all constants ¢ > 0, there exists a constant
ng > 0 such that 0 < cg(n) < f(n) foralln > ny} .

Another view, again, probably easier to use: lim

S
= o0.

g

22001 — 4 (n2)
n?lgn = w(n?)

n* # wn?

[image: image190.jpg]

· Dead-node: A node that has been expanded

· Solution-node

(LC-Search (Least Cost Search):

· The selection rule for the next E-node in FIFO or LIFO branch-and-bound is sometimes “blind”. i.e. the selection rule does not give any preference to a node that has a very good chance of getting the search to an answer node quickly.

· The search for an answer node can often be speeded by using an “intelligent” ranking function, also called an approximate cost function
[image: image99.wmf]C

^

· Expanded-node (E-node): is the live node with the best
[image: image100.wmf]C

^

 value

(Requirements

· Branching: A set of solutions, which is represented by a node, can be partitioned into mutually exclusive sets. Each subset in the partition is represented by a child of the original node.

· Lower bounding: An algorithm is available for calculating a lower bound on the cost of any solution in a given subset.

(Searching: Least-cost search (LC)

· Cost and approximation

· Each node, X, in the search tree is associated with a cost: C(X)

· C(X) = cost of reaching the current node, X (E-node), from the root + the cost of reaching an answer node from X.

C(X) = g(X) + h(X)

· Get an approximation of C(x),
[image: image101.wmf]C

^

 (x) such that

[image: image102.wmf]C

^

 (x) (C(x), and

[image: image103.wmf]C

^

 (x) = C(x) if x is a solution-node.

· The approximation part of
[image: image104.wmf]C

^

 (x) is

h(x)=the cost of reaching a solution-node from X,

not known.

· Least-cost search:

The next E-node is the one with least
[image: image105.wmf]C

^

(Example: 8-puzzle

· Cost function:
[image: image106.wmf]C

^

 = g(x) +h(x)

where

h(x) = the number of misplaced tiles

and g(x) = the number of moves so far

· Assumption: move one tile in any direction cost 1.

[image: image191.jpg]

[image: image192.jpg]

Note: In case of tie, choose the leftmost node.Algorithm:

/* live_node_set: set to hold the live nodes at any time */

/* lowcost: variable to hold the cost of the best cost at any given node */

Begin

Lowcost = (;

While live_node_set ((do

- choose a branching node, k, such that

 k (live_node_set; /* k is a E-node */

· live_node_set= live_node_set - {k};

· Generate the children of node k and the corresponding lower bounds;

Sk={(i,zi): i is child of k and zi its lower

 bound}

· For each element (i,zi) in Sk do

· If zi > U

· then

· Kill child i; /* i is a child node */

· Else

If child i is a solution

Then

U =zi; current best = child i;

Else

Add child i to live_node_set;

Endif;

Endif;

- Endfor;

Endwhile;

(Travelling Salesman Problem: A Branch and Bound algorithm
· Definition: Find a tour of minimum cost starting from a node S going through other nodes only once and returning to the starting point S.

· Definitions:

· A row(column) is said to be reduced iff it contains at least one zero and all remaining entries are non-negative.

· A matrix is reduced iff every row and column is reduced.

· Branching:

· Each node splits the remaining solutions into two groups: those that include a particular edge and those that exclude that edge

· Each node has a lower bound.

· Example: Given a graph G=(V,E), let <i,j> (E

· Bounding: How to compute the cost of each node?

· Subtract of a constant from any row and any column does not change the optimal solution (The path).

· The cost of the path changes but not the path itself.

· Let A be the cost matrix of a G=(V,E).

· The cost of each node in the search tree is computed as follows:

· Let R be a node in the tree and A(R) its reduced matrix

· The cost of the child (R), S:

· Set row i and column j to infinity

· Set A(j,1) to infinity

· Reduced S and let RCL be the reduced cost.

· C(S) = C(R) + RCL+A(i,j)

· Get the reduced matrix A' of A and let L be the value subtracted from A.

· L: represents the lower bound of the path solution

· The cost of the path is exactly reduced by L.

· What to determine the branching edge?

· The rule favors a solution through left subtree rather than right subtree, i.e., the matrix is reduced by a dimension.

· Note that the right subtree only sets the branching edge to infinity.

· Pick the edge that causes the greatest increase in the lower bound of the right subtree, i.e., the lower bound of the root of the right subtree is greater.

· Example:

· The reduced cost matrix is done as follows:

· Change all entries of row i and column j to infinity

· Set A(j,1) to infinity (assuming the start node is 1)

· Reduce all rows first and then column of the resulting matrix

Given the following cost matrix:

[image: image107.png]inf 20 30 10 11
15 inf 16 4 2
3 5 inf 2 4
19 6 18 inf 3
16 4 7 16 inf

· State Space Tree:

[image: image193.jpg]

· The TSP starts from node 1: Node 1
· Reduced Matrix: To get the lower bound of the path starting at node 1

· Row # 1: reduce by 10

[image: image108.png]inf 10 20 0 1
15 inf 16 4 2
3 5 inf 2 4
19 6 18 inf 3
16 4 7 16 inf

· Row #2: reduce 2

[image: image109.png]inf 10 20 0 1
13 inf 14 2 0
3 5 inf 2 4
19 6 18 inf 3
16 4 7 16 inf

· Row #3: reduce by 2

[image: image110.png]inf 10 20 0 1
13 inf 14 2 0
1 3 inf 0 2
19 6 18 inf 3
16 4 7 16 inf

· Row # 4: Reduce by 3:

[image: image111.png]inf 10 20 0 1
13 inf 14 2 0
1 3 inf 0 2
16 3 15 inf 0
16 4 7 16 inf

· Row # 4: Reduce by 4

[image: image112.png]inf 10 20 0 1
13 inf 14 2 0
1 3 inf 0 2
16 3 15 inf 0
12 0 3 12 inf

· Column 1: Reduce by 1

[image: image113.png]inf 10

12
0
15

11

inf
3
3
0

20 0

15

3

1

14 2 0
inf 0 2
inf 0

12

inf

· Column 2: It is reduced.

· Column 3: Reduce by 3

[image: image194.jpg]

· Column 4: It is reduced.

· Column 5: It is reduced.

· The reduced cost is: RCL = 25

· So the cost of node 1 is:

· Cost(1) = 25

· The reduced matrix is:

· Choose to go to vertex 2: Node 2
· Cost of edge <1,2> is: A(1,2) = 10

· Set row #1 = inf since we are choosing edge <1,2>

· Set column # 2 = inf since we are choosing edge <1,2>

· Set A(2,1) = inf

· The resulting cost matrix is:

[image: image114.png]inf inf inf inf inf
inf inf 11 2 0
0 inf inf 0 2
15 inf 12 inf 0
11 inf 0 12 inf

· The matrix is reduced:

· RCL = 0

· The cost of node 2 (Considering vertex 2 from vertex 1) is:

· Cost(2) = cost(1) + A(1,2) = 25 + 10 = 35

Choose to go to vertex 3: Node 3
· Cost of edge <1,3> is: A(1,3) = 17 (In the reduced matrix

· Set row #1 = inf since we are starting from node 1

· Set column # 3 = inf since we are choosing edge <1,3>

· Set A(3,1) = inf

· The resulting cost matrix is:

[image: image115.png]inf inf inf inf inf
12 inf inf 2 0
inf 3 inf 0 2
15 3 inf inf 0
11 0 inf 12 inf

· Reduce the matrix:

· Rows are reduced

· The columns are reduced except for column # 1:

· Reduce column 1 by 11:

[image: image116.png]inf inf inf inf inf
1 inf inf 2 0
inf 3 inf 0 2
4 3 inf inf 0
0 0 inf 12 inf

· The lower bound is:

· RCL = 11

· The cost of going through node 3 is:

· cost(3) = cost(1) + RCL + A(1,3) = 25 + 11 + 17 = 53

Choose to go to vertex 4: Node 4
· Remember that the cost matrix is the one that was reduced at the starting vertex 1

· Cost of edge <1,4> is: A(1,4) = 0

· Set row #1 = inf since we are starting from node 1

· Set column # 4 = inf since we are choosing edge <1,4>

· Set A(4,1) = inf

· The resulting cost matrix is:

[image: image117.png]inf inf inf inf inf
12 inf 11 inf 0
0 3 inf inf 2
inf 3 12 inf 0
11 0 0 inf inf

· Reduce the matrix:

· Rows are reduced

· Columns are reduced

· The lower bound is: RCL = 0

· The cost of going through node 4 is:

· cost(4) = cost(1) + RCL + A(1,4) = 25 + 0 + 0 = 25

Choose to go to vertex 5: Node 5
· Remember that the cost matrix is the one that was reduced at starting vertex 1

· Cost of edge <1,5> is: A(1,5) = 1

· Set row #1 = inf since we are starting from node 1

· Set column # 5 = inf since we are choosing edge <1,5>

· Set A(5,1) = inf

· The resulting cost matrix is:

[image: image118.png]inf inf inf inf inf
12 inf 11 2 inf
0 3 inf 0 inf
15 3 12 inf inf
inf 0 0 12 inf

· Reduce the matrix:

· Reduce rows:

· Reduce row #2: Reduce by 2

[image: image119.png]inf inf inf inf inf
10 inf 9 0 inf
0 3 inf 0 inf
15 3 12 inf inf
inf 0 0 12 inf

· Reduce row #4: Reduce by 3

[image: image120.png]inf inf inf inf inf
10 inf 9 0 inf
0 3 inf 0 inf
12 0 9 inf inf
inf 0 0 12 inf

· Columns are reduced

· The lower bound is:

· RCL = 2 + 3 = 5

· The cost of going through node 5 is:

· cost(5) = cost(1) + RCL + A(1,5) = 25 + 5 + 1 = 31

· In summary:

· So the live nodes we have so far are:

· 2: cost(2) = 35, path: 1->2

· 3: cost(3) = 53, path: 1->3

· 4: cost(4) = 25, path: 1->4

· 5: cost(5) = 31, path: 1->5

· Explore the node with the lowest cost: Node 4 has a cost of 25

· Vertices to be explored from node 4: 2, 3, and 5

· Now we are starting from the cost matrix at node 4 is:

· Choose to go to vertex 2: Node 6 (path is 1->4->2)

· Cost of edge <4,2> is: A(4,2) = 3

· Set row #4 = inf since we are considering edge <4,2>

· Set column # 2 = inf since we are considering edge <4,2>

· Set A(2,1) = inf

· The resulting cost matrix is:

[image: image121.png]inf inf inf inf inf
inf inf 11 inf 0
0 inf inf inf 2

inf inf inf inf inf
11 inf 0 inf inf

· Reduce the matrix:

· Rows are reduced

· Columns are reduced

· The lower bound is: RCL = 0

· The cost of going through node 2 is:

· cost(6) = cost(4) + RCL + A(4,2) = 25 + 0 + 3 = 28

Choose to go to vertex 3: Node 7 (path is 1->4->3)
· Cost of edge <4,3> is: A(4,3) = 12

· Set row #4 = inf since we are considering edge <4,3>

· Set column # 3 = inf since we are considering edge <4,3>

· Set A(3,1) = inf

· The resulting cost matrix is:

[image: image122.png]inf inf inf inf inf
12 inf inf inf 0
inf 3 inf inf 2

inf inf inf inf inf
11 0 inf inf inf

· Reduce the matrix:

· Reduce row #3: by 2:

[image: image123.png]inf inf inf inf inf
12 inf inf inf 0
inf 1 inf inf 0

inf inf inf inf inf
11 0 inf inf inf

· Reduce column # 1: by 11

[image: image124.png]inf inf inf inf inf
1 inf inf inf 0
inf 1 inf inf 0

inf inf inf inf inf
0 0 inf inf inf

· The lower bound is: RCL = 13

· So the RCL of node 7 (Considering vertex 3 from vertex 4) is:

· Cost(7) = cost(4) + RCL + A(4,3) = 25 + 13 + 12 = 50

· Choose to go to vertex 5: Node 8 (path is 1->4->5)
· Cost of edge <4,5> is: A(4,5) = 0

· Set row #4 = inf since we are considering edge <4,5>

· Set column # 5 = inf since we are considering edge <4,5>

· Set A(5,1) = inf

· The resulting cost matrix is:

[image: image125.png]inf inf inf inf inf
12 inf 11 inf inf
0 3 inf inf inf

inf inf inf inf inf
inf 0 0 inf inf

· Reduce the matrix:

· Reduced row 2: by 11

[image: image126.png]inf inf inf inf inf
1 inf 0 inf inf
0 3 inf inf inf

inf inf inf inf inf
inf 0 0 inf inf

· Columns are reduced

· The lower bound is: RCL = 11

· So the cost of node 8 (Considering vertex 5 from vertex 4) is:

· Cost(8) = cost(4) + RCL + A(4,5) = 25 + 11 + 0 = 36

LOWER BOUND THEORY

Lower bound: an estimate of a number of operations needed to solve a given problem
• Tight Lower Bound: o There exists an algorithm with the same efficiency as the lower bound •
Examples: Problem Lower bound Tightness sorting (comparison-based) Ω (nlog n)
 searching in a sorted array Ω (log n)
 n-digit integer multiplication Ω (n)
Review of Sorting: So far we have seen a number of algorithms for sorting a list of numbers in ascendingorder. Recall that an in-place sorting algorithm is one that uses no additional array storage (however,we allow Quicksort to be called in-place even though they need a stack of size

O(log n) for keepingtrack of the recursion). A sorting algorithm is stable if duplicate elements remain in the same relativeposition after sorting.

Slow Algorithms: Include BubbleSort, InsertionSort, and SelectionSort. These are all simple

Θ (n2)in-place sorting algorithms. BubbleSort and InsertionSort can be implemented as stable algorithms,but SelectionSort cannot (without significant modifications).

Mergesort: Mergesort is a stable Θ(n log n) sorting algorithm. The downside is that MergeSort isthe only algorithm of the three that requires additional array storage, implying that it is not anin-place algorithm.

Quicksort: Widely regarded as the fastest of the fast algorithms. This algorithm is O(n log n) in theexpected case, and O(n2) in the worst case. The probability that the algorithm takes asymptoticallylonger (assuming that the pivot is chosen randomly) is extremely small for large n. It is an(almost) in-place sorting algorithm but is not stable.

Heapsort: Heapsort is based on a nice data structure, called a heap, which is a fast priority queue.Elements can be inserted into a heap in O(log n) time, and the largest item can be extracted inO(log n) time. (It is also easy to set up a heap for extracting the smallest item.) If you only wantto extract the k largest values, a heap can allow you to do this is O(n + k log n) time. It is anin-place algorithm, but it is not stable.

Lower Bounds for Comparison-Based Sorting: Can we sort faster than O(n log n) time?

We will give anargument that if the sorting algorithm is based solely on making comparisons between the keys in thearray, then it is impossible to sort more efficiently than (n log n) time. Such an algorithm is called acomparison-based sorting algorithm, and includes all of the algorithms given above.Virtually all known general purpose sorting algorithms are based on making comparisons, so this isnot a very restrictive assumption. This does not preclude the possibility of a sorting algorithm whoseactions are determined by other types of operations, for example, consulting the individual bits ofnumbers, performing arithmetic operations, indexing into an array based on arithmetic operations onkeys.We will show that any comparison-based sorting algorithm for a input sequence ha1; a2; : : : ; animust

make at least (n log n) comparisons in the worst-case. This is still a difficult task if you think about it.It is easy to show that a problem can be solved fast (just give an algorithm). But to show that a problemcannot be solved fast you need to reason in some way about all the possible algorithms that might everbe written. In fact, it seems surprising that you could even hope to prove such a thing. The catch hereis that we are limited to using comparison-based algorithms, and there is a clean mathematical way ofcharacterizing all such algorithms.

Decision Tree Argument: In order to prove lower bounds, we need an abstract way of modeling “any possible”comparison-based sorting algorithm, w e model such algorithms in terms of an abstract modelcalled a decision tree.In a comparison-based sorting algorithm only comparisons between the keys are used to determinethe action of the algorithm. Let ha1; a2; : : : ; anibe the input sequence. Given two elements, aiandaj, their relative order can only be determined by the results of comparisons likeai<aj, ai<=aj,ai=aj, ai>=aj, and ai>aj.A decision tree is a mathematical representation of a sorting algorithm (for a fixed value of n). Eachnode of the decision tree represents a comparison made in the algorithm (e.g., a4 : a7), and the twobranches represent the possible results, for example, the left subtree consists of the remaining comparisonsmade under the assumption that a4 _ a7 and the right subtree for a4 > a7. (Alternatively, onemight be labeled with a4 < a7 and the other with a4 _ a7.)Observe that once we know the value of n, then the “action” of the sorting algorithm is completely determined by the results of its comparisons. This action may involve moving elements around in the array, copying them to other locations in memory, performing various arithmetic operations on non-keydata. But the bottom-line is that at the end of the algorithm, the keys will be permuted in the final array in some way. Each leaf in the decision tree is labeled with the final permutation that the algorithm generates after making all of its comparisons.To make this more concrete, let us assume that n = 3, and let’s build a decision tree for Selection Sort.Recall that the algorithm consists of two phases. The first finds the smallest element of the entire list,and swaps it with the first element. The second finds the smaller of the remaining two items, and swaps it with the second element. Here is the decision tree (in outline form). The first comparison is betweena1 and a2. The possible results are:

a1 <= a2: Then a1 is the current minimum. Next we compare a1 with a3 whose results might be either:

a1 <=a3: Then we know that a1 is the minimum overall, and the elements remain in their original positions. Then we pass to phase 2 and compare a2 with a3. The possible results are:

a2 <=a3: Final output is ha1; a2; a3i.

a2 > a3: These two are swapped and the final output is ha1; a3; a2i.

a1 > a3: Then we know that a3 is the minimum is the overall minimum, and it is swapped witha1. The we pass to phase 2 and compare a2 with a1 (which is now in the third position of the array) yielding either:

a2 <=a1: Final output is ha3; a2; a1i.

a2 > a1: These two are swapped and the final output is ha3; a1; a2i.

a1 > a2: Then a2 is the current minimum. Next we compare a2 with a3 whose results might be either:

a2 <=a3: Then we know that a2 is the minimum overall. We swap a2 with a1, and then pass to phase 2, and compare the remaining items a1 and a3. The possible results are:

a1 <=a3: Final output is ha2; a1; a3i.

a1 > a3: These two are swapped and the final output is ha2; a3; a1i.

a2 > a3: Then we know that a3 is the minimum is the overall minimum, and it is swapped witha1. We pass to phase 2 and compare a2 with a1 (which is now in the third position of the array) yielding either:

a2<= a1: Final output is ha3; a2; a1i.

a2 > a1: These two are swapped and the final output is ha3; a1; a2i.

The final decision tree is shown below. Note that there are some nodes that are unreachable. For example, in order to reach the fourth leaf from the left it must be that a1 _ a2 and a1 > a2, which cannot both be true. Can you explain this? (The answer is that virtually all sorting algorithms, especially inefficient ones like selection sort, may make comparisons that are redundant, in the sense that their outcome has already been determined by earlier comparisons.) As you can see, converting a complex sorting algorithm like HeapSort into a decision tree for a large value of n will be very tedious and complex, but I hope you are convinced by this exercise that it can be done in a simple mechanical way.

Convex Hull Problem

Given a set of points in the plane. the convex hull of the set is the smallest convex polygon that contains all the points of it.

The idea of Jarvis’s Algorithm is simple, we start from the leftmost point (or point with minimum x coordinate value) and we keep wrapping points in counterclockwise direction. The big question is, given a point p as current point, how to find the next point in output? The idea is to use orientation() here. Next point is selected as the point that beats all other points at counterclockwise orientation, i.e., next point is q if for any other point r, we have “orientation(p, r, q) = counterclockwise”. Following is the detailed algorithm.

1) Initialize p as leftmost point.
2) Do following while we don’t come back to the first (or leftmost) point.
…..a) The next point q is the point such that the triplet (p, q, r) is counterclockwise for any other point r.
…..b) next[p] = q (Store q as next of p in the output convex hull).
…..c) p = q (Set p as q for next iteration).

Disjoint Sets Problem
Many times the efficiency of an algorithm depends on the data structures used in the algorithm. A wise choice in the structure you use in solving a problem can reduce the time of execution, the time to implement the algorithm and the amount of memory used. During SRM competitions we are limited to a time limit of 2 seconds and 64 MB of memory, so the right data structure can help you remain in competition. we’ll focus on data structures for disjoint sets.

The problem
Let’s consider the following problem: In a room are N persons, and we will define two persons are friends if they are directly or indirectly friends. If A is a friend with B, and B is a friend with C, then A is a friend of C too. A group of friends is a group of persons where any two persons in the group are friends. Given the list of persons that are directly friends find the number of groups of friends and the number of persons in each group. For example N = 5 and the list of friends is: 1-2, 5-4, and 5-1. Here is the figure of the graph that represents the groups of friends. 1 and 2 are friends, then 5 and 4 are friends, and then 5 and 1 are friends, but 1 is friend with 2; therefore 5 and 2 are friends, etc.

[image: image129.jpg]

In the end there are 2 groups of friends: one group is {1, 2, 4, 5}, the other is {3}.

The solution
This problem can be solved using BFS, but let’s see how to solve this kind of problem using data structures for disjoint sets. First of all: a disjoint-set data structure is a structure that maintains a collection S1, S2, S3, …, Sn of dynamic disjoint sets. Two sets are disjoint if their intersection is null. For example set {1, 2, 3} and set {1, 5, 6} aren’t disjoint because they have in common {1}, but the sets {1, 2, 3} and {5, 6} are disjoint because their intersection is null. In a data structure of disjoint sets every set contains a representative, which is one member of the set.

Let’s see how things will work with sets for the example of the problem. The groups will be represented by sets, and the representative of each group is the person with the biggest index. At the beginning there are 5 groups (sets): {1}, {2}, {3}, {4}, {5}. Nobody is anybody’s friend and everyone is the representative of his or her own group.

The next step is that 1 and 2 become friends, this means the group containing 1 and the group with 2 will become one group. This will give us these groups: {1, 2} , {3}, {4}, {5}, and the representative of the first group will become 2. Next, 5 and 4 become friends. The groups will be {1,2}, {3}, {4, 5}. And in the last step 5 and 1 become friends and the groups will be {1, 2, 4, 5}, {3}. The representative of the first group will be 5 and the representative for second group will be 3. (We will see why we need representatives later). At the end we have 2 sets, the first set with 4 elements and the second with one, and this is the answer for the problem example: 2 groups, 1 group of 4 and one group of one.

Perhaps now you are wondering how you can check if 2 persons are in the same group. This is where the use of the representative elements comes in. Let’s say we want to check if 3 and 2 are in the same group, we will know this if the representative of the set that contains 3 is the same as the representative of the set that contains 2. One representative is 5 and the other one is 3; therefore 3 and 2 aren’t in same groups of friends.

Some operations
Let’s define the following operations:

· CREATE-SET(x) – creates a new set with one element {x}.

· MERGE-SETS(x, y) – merge into one set the set that contains element x and the set that contains element y (x and y are in different sets). The original sets will be destroyed.

· FIND-SET(x) – returns the representative or a pointer to the representative of the set that contains element x.

The solution using these operations
Let’s see the solution for our problem using these operations:

Read N;

for (each person x from 1 to N) CREATE-SET(x)

for (each pair of friends (x y)) if (FIND-SET(x) != FIND-SET(y)) MERGE-SETS(x, y)

Now if we want to see if 2 persons (x, y) are in same group we check if FIND-SET(x) == FIND-SET(y).

We will analyze the running time of the disjoint-set data structure in terms of N and M, where N is the number of times that CREATE-SET(x) is called and M is the total number of times that CREATE-SET(x), MERGE-SETS(x, y) and FIND-SET(x) are called. Since the sets are disjoint, each time MERGE-SETS(x, y) is called one set will be created and two will be destroyed, giving us one less set. If there are n sets after n-1 calls of MERGE-SETS(x,y) there will remain only one set. That’s why the number of MERGE-SETS(x,y) calls is less than or equal to the number of CREATE-SET(x) operations.

Implementation with linked lists
One way to implement disjoint set data structures is to represent each set by a linked list. Each element (object) will be in a linked list and will contain a pointer to the next element in the set and another pointer to the representative of the set. Here is a figure of how the example of the problem will look like after all operations are made. The blue arrows are the pointers to the representatives and the black arrows are the pointers to the next element in the sets. Representing sets with linked lists we will obtain a complexity of O(1) for CREATE-SET(x) and FIND-SET(x). CREATE-SET(x) will just create a new linked list whose only element (object) is x, the operation FIND-SET(x) just returns the pointer to the representative of the set that contains element (object) x.

[image: image130.jpg]

Now let’s see how to implement the MERGE-SETS(x, y) operations. The easy way is to append x’s list onto the end of y’s list. The representative of the new set is the representative of the original set that contained y. We must update the pointer to the representative for each element (object) originally on x’s list, which takes linear time in terms of the length of x’s list. It’s easy to prove that, in the worst case, the complexity of the algorithm will be O(M^2) where M is the number of operations MERGE-SETS(x, y). With this implementation the complexity will average O(N) per operation where N represents the number of elements in all sets.

The “weighted union heuristic”
Let’s see how a heuristic will make the algorithm more efficient. The heuristic is called “a weighted-union heuristic.” In this case, let’s say that the representative of a set contains information about how many objects (elements) are in that set as well. The optimization is to always append the smaller list onto the longer and, in case of ties, append arbitrarily. This will bring the complexity of the algorithm to O(M + NlogN) where M is the number of operations (FIND-SET, MERGE-SETS, CREATE-SETS) and N is the number of operations CREATE-SETS. I will not prove why the complexity is this, but if you are interested you can find the proof in the resources mentioned at the end of the article.

So far we reach an algorithm to solve the problem in O(M + NlogN) where N is the number of persons and M is the number of friendships and a memory of O(N). Still the BFS will solve the problem in O(M + N) and memory of O(N + M). We can see that we have optimized the memory but not the execution time.

Next step: root trees
The next step is to see what we can do for a faster implementation of disjoint set data structures. Let’s represent sets by rooted trees, with each node containing one element and each tree representing one set. Each element will point only to its parent and the root of each tree is the representative of that set and its own parent. Let’s see, in steps, how the trees will look for the example from the problem above.

Step 1: nobody is anybody friend

[image: image131.jpg]

We have 5 trees and each tree has a single element, which is the root and the representative of that tree.

Step 2: 1 and 2 are friends, MERGE-SETS(1, 2):

[image: image132.jpg]g eldte

The operation made is MERGE-SETS(1, 2). We have 4 trees one tree contain 2 elements and have the root 1. The other trees have a single element.

Step 3: 5 and 4 are friends, MERGE-SETS(5, 4)

[image: image133.jpg]

The operation made is MERGE-SETS(5, 4). Now we have 3 trees, 2 trees with 2 elements and one tree with one element.

Step 4: 5 and 1 are friends, MERGE-SETS(5, 1)

[image: image134.jpg]COE—OC

The operation made is MERGE-SETS(5, 1). Now we have 2 trees, one tree has 4 elements and the other one has only one element.
 UNIT-V
PRAM Algorithms
The model of a parallel algorithm is developed by considering a strategy for dividing the data and processing method and applying a suitable strategy to reduce interactions. In this chapter, we will discuss the following Parallel Algorithm Models −

· Data parallel model

· Task graph model

· Work pool model

· Master slave model

· Producer consumer or pipeline model

· Hybrid model

Data Parallel

In data parallel model, tasks are assigned to processes and each task performs similar types of operations on different data. Data parallelism is a consequence of single operations that is being applied on multiple data items.

Data-parallel model can be applied on shared-address spaces and message-passing paradigms. In data-parallel model, interaction overheads can be reduced by selecting a locality preserving decomposition, by using optimized collective interaction routines, or by overlapping computation and interaction.

The primary characteristic of data-parallel model problems is that the intensity of data parallelism increases with the size of the problem, which in turn makes it possible to use more processes to solve larger problems.

Example − Dense matrix multiplication.

[image: image135]
Task Graph Model

In the task graph model, parallelism is expressed by a task graph. A task graph can be either trivial or nontrivial. In this model, the correlation among the tasks are utilized to promote locality or to minimize interaction costs. This model is enforced to solve problems in which the quantity of data associated with the tasks is huge compared to the number of computation associated with them. The tasks are assigned to help improve the cost of data movement among the tasks.

Examples − Parallel quick sort, sparse matrix factorization, and parallel algorithms derived via divide-and-conquer approach.

[image: image136]
Here, problems are divided into atomic tasks and implemented as a graph. Each task is an independent unit of job that has dependencies on one or more antecedent task. After the completion of a task, the output of an antecedent task is passed to the dependent task. A task with antecedent task starts execution only when its entire antecedent task is completed. The final output of the graph is received when the last dependent task is completed (Task 6 in the above figure).

Work Pool Model

In work pool model, tasks are dynamically assigned to the processes for balancing the load. Therefore, any process may potentially execute any task. This model is used when the quantity of data associated with tasks is comparatively smaller than the computation associated with the tasks.

There is no desired pre-assigning of tasks onto the processes. Assigning of tasks is centralized or decentralized. Pointers to the tasks are saved in a physically shared list, in a priority queue, or in a hash table or tree, or they could be saved in a physically distributed data structure.

The task may be available in the beginning, or may be generated dynamically. If the task is generated dynamically and a decentralized assigning of task is done, then a termination detection algorithm is required so that all the processes can actually detect the completion of the entire program and stop looking for more tasks.

Example − Parallel tree search

Master-Slave Model

In the master-slave model, one or more master processes generate task and allocate it to slave processes. The tasks may be allocated beforehand if −

· the master can estimate the volume of the tasks, or

· a random assigning can do a satisfactory job of balancing load, or

· slaves are assigned smaller pieces of task at different times.

This model is generally equally suitable to shared-address-spaceor message-passing paradigms, since the interaction is naturally two ways.

In some cases, a task may need to be completed in phases, and the task in each phase must be completed before the task in the next phases can be generated. The master-slave model can be generalized to hierarchical or multi-level master-slave modelin which the top level master feeds the large portion of tasks to the second-level master, who further subdivides the tasks among its own slaves and may perform a part of the task itself.

Precautions in using the master-slave model

Care should be taken to assure that the master does not become a congestion point. It may happen if the tasks are too small or the workers are comparatively fast.

The tasks should be selected in a way that the cost of performing a task dominates the cost of communication and the cost of synchronization.

Asynchronous interaction may help overlap interaction and the computation associated with work generation by the master.

Pipeline Model

It is also known as the producer-consumer model. Here a set of data is passed on through a series of processes, each of which performs some task on it. Here, the arrival of new data generates the execution of a new task by a process in the queue. The processes could form a queue in the shape of linear or multidimensional arrays, trees, or general graphs with or without cycles.

This model is a chain of producers and consumers. Each process in the queue can be considered as a consumer of a sequence of data items for the process preceding it in the queue and as a producer of data for the process following it in the queue. The queue does not need to be a linear chain; it can be a directed graph. The most common interaction minimization technique applicable to this model is overlapping interaction with computation.

Example − Parallel LU factorization algorithm.

[image: image137]
Hybrid Models

A hybrid algorithm model is required when more than one model may be needed to solve a problem.

A hybrid model may be composed of either multiple models applied hierarchically or multiple models applied sequentially to different phases of a parallel algorithm.

Example − Parallel quick sort

PRAM Architecture

Parallel Random Access Machines (PRAM) is a model, which is considered for most of the parallel algorithms. Here, multiple processors are attached to a single block of memory. A PRAM model contains −

· A set of similar type of processors.

· All the processors share a common memory unit. Processors can communicate among themselves through the shared memory only.

· A memory access unit (MAU) connects the processors with the single shared memory.

[image: image138]
Here, n number of processors can perform independent operations on n number of data in a particular unit of time. This may result in simultaneous access of same memory location by different processors.

To solve this problem, the following constraints have been enforced on PRAM model −

· Exclusive Read Exclusive Write (EREW) − Here no two processors are allowed to read from or write to the same memory location at the same time.

· Exclusive Read Concurrent Write (ERCW) − Here no two processors are allowed to read from the same memory location at the same time, but are allowed to write to the same memory location at the same time.

· Concurrent Read Exclusive Write (CREW) − Here all the processors are allowed to read from the same memory location at the same time, but are not allowed to write to the same memory location at the same time.

· Concurrent Read Concurrent Write (CRCW) − All the processors are allowed to read from or write to the same memory location at the same time.

There are many methods to implement the PRAM model, but the most prominent ones are −

· Shared memory model

· Message passing model

· Data parallel model

Shared Memory Model

Shared memory emphasizes on control parallelism than ondata parallelism. In the shared memory model, multiple processes execute on different processors independently, but they share a common memory space. Due to any processor activity, if there is any change in any memory location, it is visible to the rest of the processors.

As multiple processors access the same memory location, it may happen that at any particular point of time, more than one processor is accessing the same memory location. Suppose one is reading that location and the other is writing on that location. It may create confusion. To avoid this, some control mechanism, like lock / semaphore, is implemented to ensure mutual exclusion.

[image: image139]
Shared memory programming has been implemented in the following −

· Thread libraries − The thread library allows multiple threads of control that run concurrently in the same memory location. Thread library provides an interface that supports multithreading through a library of subroutine. It contains subroutines for

· Creating and destroying threads

· Scheduling execution of thread

· passing data and message between threads

· saving and restoring thread contexts

Examples of thread libraries include − SolarisTM threads for Solaris, POSIX threads as implemented in Linux, Win32 threads available in Windows NT and Windows 2000, and JavaTM threads as part of the standard JavaTM Development Kit (JDK).

· Distributed Shared Memory (DSM) Systems − DSM systems create an abstraction of shared memory on loosely coupled architecture in order to implement shared memory programming without hardware support. They implement standard libraries and use the advanced user-level memory management features present in modern operating systems. Examples include Tread Marks System, Munin, IVY, Shasta, Brazos, and Cashmere.

· Program Annotation Packages − This is implemented on the architectures having uniform memory access characteristics. The most notable example of program annotation packages is OpenMP. OpenMP implements functional parallelism. It mainly focuses on parallelization of loops.

The concept of shared memory provides a low-level control of shared memory system, but it tends to be tedious and erroneous. It is more applicable for system programming than application programming.

Merits of Shared Memory Programming

· Global address space gives a user-friendly programming approach to memory.

· Due to the closeness of memory to CPU, data sharing among processes is fast and uniform.

· There is no need to specify distinctly the communication of data among processes.

· Process-communication overhead is negligible.

· It is very easy to learn.

Demerits of Shared Memory Programming

· It is not portable.

· Managing data locality is very difficult.

Message Passing Model

Message passing is the most commonly used parallel programming approach in distributed memory systems. Here, the programmer has to determine the parallelism. In this model, all the processors have their own local memory unit and they exchange data through a communication network.

Processors use message-passing libraries for communication among themselves. Along with the data being sent, the message contains the following components −

· The address of the processor from which the message is being sent;

· Starting address of the memory location of the data in the sending processor;

· Data type of the sending data;

· Data size of the sending data;

· The address of the processor to which the message is being sent;

· Starting address of the memory location for the data in the receiving processor.

Processors can communicate with each other by any of the following methods −

· Point-to-Point Communication

· Collective Communication

· Message Passing Interface

Point-to-Point Communication

Point-to-point communication is the simplest form of message passing. Here, a message can be sent from the sending processor to a receiving processor by any of the following transfer modes −

· Synchronous mode − The next message is sent only after the receiving a confirmation that its previous message has been delivered, to maintain the sequence of the message.

· Asynchronous mode − To send the next message, receipt of the confirmation of the delivery of the previous message is not required.

Collective Communication

Collective communication involves more than two processors for message passing. Following modes allow collective communications −

· Barrier − Barrier mode is possible if all the processors included in the communications run a particular bock (known as barrier block) for message passing.

· Broadcast − Broadcasting is of two types −

· One-to-all − Here, one processor with a single operation sends same message to all other processors.

· All-to-all − Here, all processors send message to all other processors.

Messages broadcasted may be of three types −

· Personalized − Unique messages are sent to all other destination processors.

· Non-personalized − All the destination processors receive the same message.

· Reduction − In reduction broadcasting, one processor of the group collects all the messages from all other processors in the group and combine them to a single message which all other processors in the group can access.

Merits of Message Passing

· Provides low-level control of parallelism;

· It is portable;

· Less error prone;

· Less overhead in parallel synchronization and data distribution.

Demerits of Message Passing

· As compared to parallel shared-memory code, message-passing code generally needs more software overhead.

Message Passing Libraries

There are many message-passing libraries. Here, we will discuss two of the most-used message-passing libraries −

· Message Passing Interface (MPI)

· Parallel Virtual Machine (PVM)

MESSAGE PASSING INTERFACE (MPI)

It is a universal standard to provide communication among all the concurrent processes in a distributed memory system. Most of the commonly used parallel computing platforms provide at least one implementation of message passing interface. It has been implemented as the collection of predefined functions calledlibrary and can be called from languages such as C, C++, Fortran, etc. MPIs are both fast and portable as compared to the other message passing libraries.

Merits of Message Passing Interface
· Runs only on shared memory architectures or distributed memory architectures;

· Each processors has its own local variables;

· As compared to large shared memory computers, distributed memory computers are less expensive.

Demerits of Message Passing Interface
· More programming changes are required for parallel algorithm;

· Sometimes difficult to debug; and

· Does not perform well in the communication network between the nodes.

PARALLEL VIRTUAL MACHINE (PVM)

PVM is a portable message passing system, designed to connect separate heterogeneous host machines to form a single virtual machine. It is a single manageable parallel computing resource. Large computational problems like superconductivity studies, molecular dynamics simulations, and matrix algorithms can be solved more cost effectively by using the memory and the aggregate power of many computers. It manages all message routing, data conversion, task scheduling in the network of incompatible computer architectures.

Features of PVM
· Very easy to install and configure;

· Multiple users can use PVM at the same time;

· One user can execute multiple applications;

· It’s a small package;

· Supports C, C++, Fortran;

· For a given run of a PVM program, users can select the group of machines;

· It is a message-passing model,

· Process-based computation;

· Supports heterogeneous architecture.

Data Parallel Programming

The major focus of data parallel programming model is on performing operations on a data set simultaneously. The data set is organized into some structure like an array, hypercube, etc. Processors perform operations collectively on the same data structure. Each task is performed on a different partition of the same data structure.

It is restrictive, as not all the algorithms can be specified in terms of data parallelism. This is the reason why data parallelism is not universal.

Data parallel languages help to specify the data decomposition and mapping to the processors. It also includes data distribution statements that allow the programmer to have control on data – for example, which data will go on which processor – to reduce the amount of communication within the processors.

To apply any algorithm properly, it is very important that you select a proper data structure. It is because a particular operation performed on a data structure may take more time as compared to the same operation performed on another data structure.

Example − To access the ith element in a set by using an array, it may take a constant time but by using a linked list, the time required to perform the same operation may become a polynomial.

Therefore, the selection of a data structure must be done considering the architecture and the type of operations to be performed.

The following data structures are commonly used in parallel programming −

· Linked List

· Arrays

· Hypercube Network

Linked List

A linked list is a data structure having zero or more nodes connected by pointers. Nodes may or may not occupy consecutive memory locations. Each node has two or three parts − one data part that stores the data and the other two are link fields that store the address of the previous or next node. The first node’s address is stored in an external pointer called head. The last node, known as tail, generally does not contain any address.

There are three types of linked lists −

· Singly Linked List

· Doubly Linked List

· Circular Linked List

Singly Linked List

A node of a singly linked list contains data and the address of the next node. An external pointer called head stores the address of the first node.

[image: image140]
Doubly Linked List

A node of a doubly linked list contains data and the address of both the previous and the next node. An external pointer calledhead stores the address of the first node and the external pointer called tail stores the address of the last node.

[image: image141]
Circular Linked List

A circular linked list is very similar to the singly linked list except the fact that the last node saved the address of the first node.

[image: image142]
Arrays

An array is a data structure where we can store similar types of data. It can be one-dimensional or multi-dimensional. Arrays can be created statically or dynamically.

· In statically declared arrays, dimension and size of the arrays are known at the time of compilation.

· In dynamically declared arrays, dimension and size of the array are known at runtime.

For shared memory programming, arrays can be used as a common memory and for data parallel programming, they can be used by partitioning into sub-arrays.

Hypercube Network

Hypercube architecture is helpful for those parallel algorithms where each task has to communicate with other tasks. Hypercube topology can easily embed other topologies such as ring and mesh. It is also known as n-cubes, where n is the number of dimensions. A hypercube can be constructed recursively.

NP-Complete and NP- Hard Problems

Can all computational problems be solved by a computer?

There are computational problems that cannot be solved by algorithms even with unlimited time. For example Turing Halting problem (Given a program and an input, whether the program will eventually halt when run with that input, or will run forever). Alan Turing proved that general algorithm to solve the halting problem for all possible program-input pairs cannot exist.
Status of NP Complete problems is another failure story, NP complete problems are problems whose status is unknown. No polynomial time algorithm has yet been discovered for any NP complete problem, nor has anybody yet been able to prove that no polynomial-time algorithm exist for any of them. The interesting part is, if any one of the NP complete problems can be solved in polynomial time, then all of them can be solved.

Whatare NP, P, NP-complete and NP-Hard problems?
P is set of problems that can be solved by a deterministic Turing machine in Polynomial time.NP is set of decision problems that can be solved by a Non-deterministic Turing Machine in Polynomial time. P is subset of NP (any problem that can be solved by deterministic machine in polynomial time can also be solved by non-deterministic machine in polynomial time).
Informally, NP is set of decision problems which can be solved by a polynomial time via a “Lucky Algorithm”, a magical algorithm that always makes a right guess among the given set of choices (Source Ref 1).

NP-complete problems are the hardest problems in NP set. A decision problem L is NP-complete

 if:
 1) L is in NP
2) Every problem in NP is reducible to L in polynomial time (Reduction is defined below).

A problem is NP-Hard if it follows property 2 mentioned above, doesn’t need to follow property 1. Therefore, NP-Complete set is also a subset of NP-Hard set.

NP-completeness applies to the realm of decision problems. It was set up this way because it’s easier to compare the difficulty of decision problems than that of optimization problems. In reality, though, being able to solve a decision problem in polynomial time will often permit us to solve the corresponding optimization problem in polynomial time (using a polynomial number of calls to the decision problem). So, discussing the difficulty of decision problems is often really equivalent to discussing the difficulty of optimization problems. (Source Ref 2).
For example, consider the vertex cover problem (Given a graph, find out the minimum sized vertex set that covers all edges). It is an optimization problem. Corresponding decision problem is, given undirected graph G and k, is there a vertex cover of size k?

Reduction Process

Learning reduction in general is very important. For example, if we have library functions to solve certain problem and if we can reduce a new problem to one of the solved problems, we save a lot of time. Consider the example of a problem where we have to find minimum product path in a given directed graph where product of path is multiplication of weights of edges along the path. If we have code for Dijkstra’s algorithm to find shortest path, we can take log of all weights and use Dijkstra’s algorithm to find the minimum product path rather than writing a fresh code for this new problem.

From the definition of NP-complete, it appears impossible to prove that a problem L is NP-Complete. By definition, it requires us to that show every problem in NP is polynomial time reducible to L. Fortunately, there is an alternate way to prove it. The idea is to take a known NP-Complete problem and reduce it to L. If polynomial time reduction is possible, we can prove that L is NP-Complete by transitivity of reduction (If a NP-Complete problem is reducible to L in polynomial time, then all problems are reducible to L in polynomial time).

There must be some first NP-Complete problem proved by definition of NP-Complete problems. SAT (Boolean satisfiability problem) is the first NP-Complete problem proved by Cook .

It is always useful to know about NP-Completeness even for engineers. Suppose you are asked to write an efficient algorithm to solve an extremely important problem for your company. After a lot of thinking, you can only come up exponential time approach which is impractical. If you don’t know about NP-Completeness, you can only say that I could not come with an efficient algorithm. If you know about NP-Completeness and prove that the problem as NP-complete, you can proudly say that the polynomial time solution is unlikely to exist. If there is a polynomial time solution possible, then that solution solves a big problem of computer science many scientists have been trying for years.

There are many problems for which no polynomial-time algorithms ins known. Some of these problems are traveling salesperson, optimal graph coloring, the knapsack problem, Hamiltonian cycles, integer programming, finding the longest simple path in a graph, and satisfying a Boolean formula.

These problems belongs to an interesting class of problems, called the NP-Complete" problems, whose status is unknown.

The NP-Complete problems are tractable i.e., require a superpolynomial time. The reason is that a polynomial time algorithm to solve any one of the NP-Complete problems would automatically provide us with polynomial-time algorithms for all of them.

The basic idea is that there may be problems that are hard to solve, but the validity of any purported solution can be verified easily.

Consider the problem "Hamiltonian Cycle". Hence an undirected graph, the problem is to find a path that starts from some node, visits each node once and only once, and returns to the starting node. If such cycle exists, we say that the graph is Hamiltonian. This problem is hard. However, it is easy to verify whether a "given" sequence of nodes defines a Hamiltonian cycle.

Polynomial-Time Algorithm
1. Algorithms with worst case running time of O(nk), where k is a constant, are called tractable others are called intractable or super-polynomial.

2. Formally, an algorithm is polynomial-time algorithm if there exists a polynomial p(n) such that the algorithm can solve any instance of size n in a time O(p(n)).

3. Problem requiring Ω(n35) time to solve are essentially intractable for large n. Most known polynomial time algorithm run in time O(nk) for fairly low value of k.

The advantages in considering the class of polynomial-time algorithms is that all reasonable deterministic single processor model of computation can be simulated on each other with at most a polynomial slow-down.

N P-Hard and N P-Complete Problems

Basic concepts

Solvability of algorithms

– There are algorithms for which there is no known solution, for example, Turing’s Halting Problem

Decision problem

Given an arbitrary deterministic algorithm A and a finite input I Will A with input I ever terminate, or enter an infinite loop?

Alan Turing proved that a general algorithm to solve the halting problem for all possible program-input pairs cannot exist

– Halting problem cannot be solved by any computer, no matter how much time is provided

In algorithmic terms, there is no algorithm of any complexity to solve this problem Efficient algorithms

– Efficiency measured in terms of speed

– For some problems, there is no known efficient solution

– Distinction between problems that can be solved in polynomial time and problems for which no polynomial time algorithm is known

Problems classified to belong to one of the two groups

· Problems with solution times bound by a polynomial of a small degree

– Most searching and sorting algorithms

– Also called tractable algorithms

– For example, ordered search (O(lg n)), polynomial evaluation (O(n)), sorting (O(n log n))

· Problems with best known algorithms not bound by a polynomial

– Hard, or intractable, problems

– Traveling salesperson (O(n22n)), knapsack (O(2n=2))

– None of the problems in this group has been solved by any polynomial time algorithm

– N P-complete problems

No efficient algorithm for an N P-complete problem has ever been found; but nobody has been able to prove that such as algorithm does not exist

– P =6 N P

Famous open problem in Computer Science since 1971 Theory of N P-completeness

– Show that many of the problems with no polynomial time algorithms are computationally related

– The group of problems is further subdivided into two classes

N P-complete. A problem that is N P-complete can be solved in polynomial time iff all other N P-complete problems can also be solved in polynomial time

N P-hard. If an N P-hard problem can be solved in polynomial time then all N P-complete problems can also be solved in polynomial time

– All N P-complete problems are N P-hard but some N P-hard problems are known not to be N P-complete

– The problems in class P can be solved in O(Nk) time, for some constant k (polynomial time)

– The problems in class N P can be verified in polynomial time

If we are given a certificate of a solution, we can verify that the certificate is correct in polynomial time in the size of input to the problem

– Some polynomial-time solvable problems look very similar to N P-complete problems

– Shortest vs longest simple path between vertices

Shortest path from a single source in a directed graph G = (V; E) can be found in O(V E) time

Finding the longest path between two vertices is N P-complete, even if the weight of each edge is 1

	
	

– Euler tour vs Hamiltonian cycle
Euler tour of a connected directed graph G = (V; E) is a cycle that traverses each edge of G exactly once, although it may visit a vertex more than once; it can be determined in O(E) time

A Hamiltonian cycle of a directed graph G = (V; E) is a simple cycle that contains each vertex in V

Determining whether a directed graph has a Hamiltonian cycle is N P-complete

The solution is given by the sequence hv1; v2; : : : ; vjV ji such that for each 1 i < jV j, (vi; vi+1) 2 E

The certificate would be the above sequence of vertices

It is easy to check in polynomial time that the edges formed by the above sequence are in E, and so is the edge vjV j; v1.

– 2-CNF satisfiability vs. 3-CNF satisfiability

Boolean formula has variables that can take value true or false The variables are connected by operators ^, _, and :

A Boolean formula is satisfiable if there exists some assignment of values to its variables that cause it to evaluate it to true

A Boolean formula is in k-conjunctive normal form (k-CNF) if it is the AND of clauses of ORs of exactly k variables or their negations

2-CNF: (x1 _ :x2) ^ (:x1 _ x3) ^ (:x2 _ :x3)

Satisfied by x1 = true, x2 = false, x3 = true

We can determine in polynomial time whether a 2-CNF formula is satisfiable but satisfiability of a 3-CNF formula is N P-complete

– P N P

Any problem in P can be solved in polynomial time even without the certificate The open question is whether or not P N P

Showing problems to be N P-complete

– A problem is N P-complete if it is in N P and is as “hard” as any problem in N P

– If any N P-complete problem can be solved in polynomial time, then every N P-complete problem has a polynomial time algorithm

– Analyze an algorithm to show how hard it is (instead of how easy it is)

– Show that no efficient algorithm is likely to exist for the problem

As a designer, if you can show a problem to be N P-complete, you provide the proof for its intractability

You can spend your time to develop an approximation algorithm rather than searching for a fast algorithm that can solve the problem exactly

– Proof in terms of (n)

Decision problems vs optimization problems

Definition 1 Any problem for which the answer is either zero or one is called a decision problem. An algorithm for a decision problem is termed a decision algorithm.

Definition 2 Any problem that involves the identification of an optimal (either minimum or maximum) value of a given cost function is known as an optimization problem. An optimization algorithm is used to solve an optimization problem.

Optimization problems

Each feasible solution has an associated value; the goal is to find a feasible solution with the best value

SHORTEST PATH problem

Given an undirected graph G and vertics u and v Find a path from u to v that uses the fewest edges

Single-pair shortest-path problem in an undirected, unweighted graph

Decision problems

The problem gives an answer as “yes” or “no”

Decision problem is assumed to be easier (or no harder) to solve compared to the optimization problem

Decision problem can be solved in polynomial time if and only if the corresponding optimization problem can If the decision problem cannot be solved in polynomial time, the optimization problem cannot be solved

in polynomial time either

N P-complete problems confined to the realm of decision problems

Cast an optimization problem as a related decision problem by imposing a bound on the value to be optimized PATH problem as related to SHORTEST PATH problem

Given a directed graph G, vertices u and v, and an integer k, is there a path from u to v with at most k edges?

Relationship between an optimization problem and its related decision problem Try to show that the optimization problem is “hard”

Or that the decision problem is “easier” or “no harder”

We can solve PATH by solving SHORTEST PATH and then comparing the number of edges to k If an optimization problem is easy, its decision problem is easy as well

In NP-completeness, if we can provide evidence that a decision problem is hard, we can also provide evidence that its related optimization problem is hard

	
	3

– Reductions
Showing that one problem is no harder or no easier than another also applicable when both problems are decision problems

N P-completeness proof – general steps

Consider a decision problem A; we’ll like to solve it in polynomial time

Instance: input to a particular problem; for example, in PATH, an instance is a particular graph G, two particular variables u and v in G, and a particular integer k

Suppose that we know how to solve a different decision problem B in polynomial time

Suppose that we have a procedure that transforms any instance of A into some instance of B with following characteristics:

Transformation take polynomial time

Both answers are the same; the answer for is a “yes” iff the answer for is a “yes”

The above procedure is called a polynomial time reduction algorithm and provides us a way to solve problem A in polynomial time

1. Given an instance of A, use a polynomial-time reduction algorithm to transform it to an instance of B

2. Run polynomial-time decision algorithm for B on instance

3. Use the answer for as the answer for

Using polynomial-time reductions to show that no polynomial-time algorithm can exist for a particular problem B

Suppose we have a decision problem A for which we already know that no polynomial-time algorithm can exist

Suppose that we have a polynomial time reduction transforming instances of A to instances of B Simple proof that no polynomial-time algorithm can exist for B

Deterministic algorithms

Algorithms with uniquely defined results

Predictable in terms of output for a certain input
– Nondeterministic algorithms are allowed to contain operations whose outcomes are limited to a given set of possi-bilities instead of being uniquely defined

– Specified with the help of three new O(1) functions

1. choice (S)

Arbitrarily chooses one of the elements of set S

x = choice(1,n) can result in x being assigned any of the integers in the range [1; n], in a completely arbitrary manner

No rule to specify how this choice is to be made

2. failure()

Signals unsuccessful completion of a computation Cannot be used as a return value

3. success()

Signals successful completion of a computation Cannot be used as a return value

If there is a set of choices that leads to a successful completion, then one choice from this set must be made

– A nondeterministic algorithm terminates unsuccessfully iff there exist no set of choices leading to a success signal

– A machine capable of executing a nondeterministic algorithm as above is called a nondeterministic machine

– Nondeterministic search of x in an unordered array A with n 1 elements

Determine an index j such that A[j] = x or j =
1 if x 62A

algorithm nd_search (A, n, x)

{

· Non-deterministic search

· Input: A: Array to be searched

· Input: n: Number of elements in A

· Input: x: Item to be searched for

· Output: Returns -1 if item does not exist, index of item otherwise

int j = choice (0, n-1); if (A[j] == x)

{

cout << j; success();

}

cout << -1; failure();

}

By the definition of nondeterministic algorithm, the output is -1 iff there is no j such that A[j] = x

Since A is not ordered, every deterministic search algorithm is of complexity (n), whereas the nondetermin-istic algorithm has the complexity as O(1)

– Nondeterministic sorting algorithm

· Sort n positive integers in nondecreasing order

algorithm nd_sort (A, n)

{

· Initialize B[]; B is used for convenience

· It is initialized to 0 though any value not in A[] will suffice

for (i = 0; i < n; B[i++] = 0;); for (i = 0; i < n; i++)

{

j = choice (0, n - 1);

// Make sure that B[j] has not been used already

if (B[j] != 0) failure(); B[j] = A[i];

}

// Verify order

for (i = 0; i < n-1; i++)

if (B[i] > B[i+1]) failure();

write (B); success();

}

– Complexity of nd_sort is (n)

Best-known deterministic sorting algorithm has a complexity of (n lg n)
Deterministic interpretation of nondeterministic algorithm

Possible by allowing unbounded parallelism in computation

Imagine making n copies of the search instance above, all running in parallel and searching at different index values for x

The first copy to reach success() terminates all other copies If a copy reaches failure(), only that copy is terminated

In abstract terms, nondeterministic machine has the capability to recognize the correct solution from a set of allowable choices, without making copies of the program

Possible to construct nondeterministic algorithms for many different choice sequences leading to successful completions (see nd_sort)

– If the numbers in A are not unique, many different permutations will result into sorted sequence

– We’ll limit ourselves to problems that result in a unique output, or decision algorithms

A decision algorithm will output 0 or 1

Implicit in the signals success() and failure()

– Output from a decision algorithm is uniquely defined by input parameters and algorithm specification

An optimization problem may have many feasible solutions

– The problem is to find out the feasible solution with the best associated value

– N P-completeness applies directly not to optimization problems but to decision problems Example: Maximal clique

– Clique is a maximal complete subgraph of a graph G = (V; E)

– Size of a clique is the number of vertices in it

– Maximal clique problem is an optimization problem that has to determine the size of a largest clique in G

– Corresponding decision problem is to determine whether G has a clique of size at least k for some given k

– Let us denote the deterministic decision algorithm for the clique decision problem as dclique(G, k)

– If jV j = n, the size of a maximal clique can be found by

for (k = n; dclique (G, k) != 1; k--);

– If time complexity of dclique is f(n), size of maximal clique can be found in time g(n) nf(n) Decision problem can be solved in time g(n)

– Maximal clique problem can be solved in polynomial time iff the clique decision problem can be solved in polynomial time

Example: 0/1 knapsack
P
P

– Is there a 0/1 assignment of values to xi, 1 i n, such that pixi r and wixi m, for given m and r, and nonnegative pi and wi

– If the knapsack decision problem cannot be solved in deterministic polynomial time, then the optimization problem cannot either

Comment on uniform parameter n to measure complexity

– n 2 N is length of input to algorithm, or input size All inputs are assumed to be integers

Rational inputs can be specified by pairs of integers

– n is expressed in binary representation

n = 1010 is expressed as n = 10102 with length 4

Length of a positive integer k10 is given by blog2 kc + 1 bits Length of 02 is 1

Length of the input to an algorithm is the sum of lengths of the individual numbers being input Length of input in radix r for k10 is given by blogr kc + 1

Length of 10010 is log10 100 + 1 = 3

Finding length of any input using radix r > 1

logr k = log2 k= log2 r

Length is given by c(r)n where n is the length using binary representation and c(r) is a number fixed for r

– Input in radix 1 is in unary form

510 = 111111

Length of a positive integer k is k

Length of a unary input is exponentially related to the length of the corresponding r-ary input for radix r, r > 1 Maximal clique, again

– Input can be provided as a sequence of edges and an integer k

– Each edge in E(G) is a pair of vertices, represented by numbers (i; j)

– Size of input for each edge (i; j) in binary representation is blog2 ic + blog2 jc + 2

– Input size of any instance is

X

n =
(blog2 ic + blog2 jc + 2) + blog2 kc + 1

(i; j) 2 E(G) i < j

k is the number to indicate the clique size

	
	

If this decision problem cannot be solved by an algorithm of complexity p(n) for some polynomial p(), then it cannot be solved by an algorithm of complexity p(jV j)

0/1 knapsack

– Input size q (q > n) for knapsack decision problem is

X

q =
(blog2 pic + blog2 wic) + 2n + blog2 mc + blog2 rc + 2

1
i n

P
P

– If the input is given in unary notation, then input size s =
pi +
wi + m + r

– Knapsack decision and optimization problems can be solved in time p(s) for some polynomial p() (dynamic pro-gramming algorithm)

– However, there is no known algorithm with complexity O(p(n)) for some polynomial p()
Definition 3 The time required by a nondeterministic algorithm performing on any given input is the minimum number of steps needed to reach a successful completion if there exists a sequence of choices leading to such a completion. In case successful completion is not possible, then the time required is O(1). A nondeterministic algorithm is of complexity O(f(n)) if for all inputs of size n, n n0, that result in a successful completion, the time required is at most cf(n) for some constants c and n0.
– Above definition assumes that each computation step is of a fixed cost
Guaranteed by the finiteness of each word in word-oriented computers
– If a step is not of fixed cost, it is necessary to consider the cost of individual instructions
Addition of two m-bit numbers takes O(m) time
Multiplication of two m-bit numbers takes O(m2) time.
--------------------------------------*****************--
– Consider the deterministic decision algorithm to get sum of subsets

algorithm sum_of_subsets (A, n, m)

{

· Input: A is an array of integers

· Input: n is the size of the array

· Input: m gives the index of maximum bit in the word

	s =
	1
	
	
	// s is an m+1 bit
	word

	
	
	
	
	// bit 0 is always
	1

	for
	i = 1
	to n
	
	

	
	s |= (s << A[i])
	// shift s left by
	A[i] bits

	if bit m in
	s is 1
	
	

	
	write
	(
	"A subset sums to m");
	

	else
	
	
	
	
	

	
	write
	(
	"No subset sums to m");
	

}

Bits are numbered from 0 to m from right to left

Bit i will be 0 if and only if no subsets of A[j], 1 j n sums to i Bit 0 is always 1 and bits are numbered 0; 1; 2; : : : ; m right to left Number of steps for this algorithm is O(n)

Each step moves m + 1 bits of data and would take O(m) time on a conventional computer

Assuming one unit of time for each basic operation for a fixed word size, the complexity of deterministic algorithm is O(nm)

Knapsack decision problem

Non-deterministic polynomial time algorithm for knapsack problem

algorithm nd_knapsack (p, w, n, m, r, x)

{

· Input: p: Array to indicate profit for each item

· Input: w: Array to indicate weight of each item

· Input: n: Number of items

· Input: m: Total capacity of the knapsack

· Input: r: Expected profit from the knapsack

· Output: x: Array to indicate whether corresponding item is carried or not

	W =
	0;

	P =
	0;

	for
	(i = 1; i <= n; i++)

	{
	

	
	x[i] = choice (0, 1);

	
	W += x[i] * w[i];

	}
	P += x[i] * p[i];

	
	

if ((W > m) || (P < r)) failure();

else

success();

}

The for loop selects or discards each of the n items

– It also recomputes the total weight and profit coresponding to the selection

– The if statement checks to see the feasibility of assignment and whether the profit is above a lower bound r

– The time complexity of the algorithm is O(n)

– If the input length is q in binary, time complexity is O(q)

Maximal clique

– Nondeterministic algorithm for clique decision problem

– Begin by trying to form a set of k distinct vertices

– Test to see if they form a complete subgraph

Satisfiability

– Let x1; x2; : : : denote a set of boolean variables

– Let xi denote the complement of xi

– A variable or its complement is called a literal

– A formula in propositional calculus is an expression that is constructed by connecting literals using the operations and (^) and or (_)

– Examples of formulas in propositional calculus

(x1 ^ x2) _ (x3 ^ x4) (x3 _ x4) ^ (x1 _ x2)

– Conjunctive normal form (CNF)

A formula is in CNF iff it is represented as ^ki=1ci, where ci are clauses represented as _lij; lij are literals

– Disjunctive normal form (DNF)

A formula is in DNF iff it is represented as _ki=1ci, where ci are clauses represented as ^lij

	
	8

–

–
	NP-Hard and NP-Complete Problems
	9

– Satisfiability problem is to determine whether a formula is true for some assignment of truth values to the variables

CNF-satisfiability is the satisfiability problem for CNF formulas

– Polynomial time nondeterministic algorithm that terminates successfully iff a given propositional formula E(x1; : : : ; xn) is satisfiable

Nondeterministically choose one of the 2n possible assignments of truth values to (x1; : : : ; xn) Verify that E(x1; : : : ; xn) is true for that assignment

algorithm eval (E, n)

{

· Determine whether the propositional formula E is satisfiable.

· Variable are x1, x2, ..., xn

· Choose a truth value assignment

for (i = 1; i <= n; i++)

x_i = choice (true, false);

if (E (x1, ..., xn)) success();

else failure();

}

The nondeterministic time to choose the truth value is O(n)

The deterministic evaluation of the assignment is also done in O(n) time The classes N P-hard and N P-complete

– Polynomial complexity

An algorithm A is of polynomial complexity if there exists a polynomial p() such that the computation time of A is O(p(n)) for every input of size n

Definition 4 P is the set of all decision problems solvable by deterministic algorithms in polynomial time. N P is the set of all decision problems solvable by nondeterministic algorithms in polynomial time.

– Since deterministic algorithms are a special case of nondeterministic algorithms, P
N P

– An unsolved problem in computer science is: Is P = N P or is P =6 N P?

– Cook formulated the following question: Is there any single problem in N P such that if we showed it to be in P,

then that would imply that P = N P? This led to Cook’s theorem as follows:

Theorem 1 Satisfiability is in P if and only if P = N P.

Reducibility

– Show that one problem is no harder or no easier than another, even when both problems are decision problems

Definition 5 Let A and B be problems. Problem A reduces to B (written as A / B) if and only if there is a way to solve A by a deterministic polynomial time algorithm using a deterministic algorithm that solves B in polynomial time.

If we have a polynomial time algorithm for B, then we can solve A in polynomial time Reducibility is transitive

A / B ^ B / C) A / C

Definition 6 Given two sets A and B 2 N and a set of functions F : N ! N, closed under composition, A is called reducible to B (A / B) if and only if

9f 2 F j 8x 2 N; x 2 A , f(x) 2 B

	NP-Hard and NP-Complete Problems
	10

– Procedure is called polynomial-time reduction algorithm and it provides us with a way to solve problem A in polynomial time

Also known as Turing reduction

Given an instance of A, use a polynomial-time reduction algorithm to transform it to an instance of B Run the polynomial-time decision algorithm on instance of B

Use the answer of as the answer for Reduction from squaring to multiplication

All we know is to add, subtract, and take squares Product of two numbers is computed by

2
a
b = (a + b)2
a2
b2

Reduction in the other direction: if we can multiply two numbers, we can square a number Computing (x + 1)2 from x2

For efficiency sake, we want to avoid multiplication

Turing reductions compute the solution to one problem, assuming the other problem is easy to solve

– Polynomial-time many-one reduction

Converts instances of a decision problem A into instances of a decision problem B Written as A m B; A is many-one reducible to B

If we have an algorithm N which solves instances of B, we can use it to solve instances of A in Time needed for N plus the time needed for reduction

Maximum of space needed for N and the space needed for reduction

Formally, suppose A and B are formal languages over the alphabets and

A many-one reduction from A to B is a total computable function f : ! with the property

· 2 A , f(!) 2 B; 8! 2

If such an f exists, A is many-one reducible to B

A class of languages C is closed under many-one reducibility if there exists no reduction from a language in C to a language outside C

If a class is closed under many-one reducibility, then many-one reduction can be used to show that a problem is in C by reducing a problem in C to it

Let S P (N) (power set of natural numbers), and be a reduction, then S is called closed under if

8s 2 S 8A 2 N A
S , A 2 S

Most well-studied complexity classes are closed under some type of many-one reducibility, including P

	
	and N P

	Square to multiplication reduction, again

	
	Add the restriction that we can only use square function one time, and only at the end

	
	Even if we are allowed to use all the basic arithmetic operations, including multiplication, no reduction

	
	exists in general, because we may have to compute an irrational number like p
	
	from rational numbers

	
	
	2
	

Going in the other direction, however, we can certainly square a number with just one multiplication, only at the end

Using this limited form of reduction, we have shown the unsurprising result that multiplication is harder in general than squaring

Many-one reductions map instances of one problem to instances of another Many-one reduction is weaker than Turing reduction

Weaker reductions are more effective at separating problems, but they have less power, making reductions harder to design

– Use polynomial-time reductions in opposite way to show that a problem is N P-complete

	NP-Hard and NP-Complete Problems
	11

Use polynomial-time reduction to show that no polynomial-time algorithm can exist for problem B A N is called hard for S if

8s 2 S s
A

A
N is called complete for S if A is hard for S and A is in S

Proof by contradiction

Assume that a known problem A is hard to solve Given a new problem B, similar to A

Assume that B is solvable in polynomial time

Show that every instance of problem A can be solved in polynomial time by reducing it to problem B Contradiction

– Cannot assume that there is absolutely no polynomial-time algorithm for A

Definition 7 A problem A is N P-hard if and only if satisfiability reduces to A (satisfiability / A). A problem A is N P-complete if and only if A is N P-hard and A 2 N P.

– There are N P-hard problems that are not N P-complete

– Only a decision problem can be N P-complete

– An optimization problem may be N P-hard; cannot be N P-complete

– If A is a decision problem and B is an optimization problem, it is quite possible that A / B Knapsack decision problem can be reduced to the knapsack optimization problem

Clique decision problem reduces to clique optimization problem

– There are some N P-hard decision problems that are not N P-complete

– Example: Halting problem for deterministic algorithms

N P-hard decision problem, but not N P-complete

Determine for an arbitrary deterministic algorithm A and input I, whether A with input I ever terminates

Well known that halting problem is undecidable; there exists no algorithm of any complexity to solve halting problem

It clearly cannot be in N P

To show that “satisfiability / halting problem”, construct an algorithm A whose input is a propositional formula

X

If X has n variables, A tries out all the 2n possible truth assignments and verifies whether X is satisfiable If X is satisfiable, it stops; otherwise, A enters an infinite loop

Hence, A halts on input X iff X is satisfiable

If we had a polynomial time algorithm for halting problem, then we could solve the satisfiability problem in polynomial time using A and X as input to the algorithm for halting problem

Hence, halting problem is an N P-hard problem that is not in N P

Definition 8 Two problems A and B are said to be polynomially equivalent if and only if A / B and B / A.

– To show that a problem B is N P-hard, it is adequate to show that A / B, where A is some problem already known to be N P-hard

– Since / is a transitive relation, it follows that if satisfiability / A and A / B, then satisfiability / B

– To show that an N P-hard decision problem is N P-complete, we have just to exhibit a polynomial time nondeter-ministic algorithm for it

Polynomial time

Problems that can be solved in polynomial time are regarded as tractable problems

	NP-Hard and NP-Complete Problems
	12

1. Consider a problem that is solved in time O(n100)

– It is polynomial time but sounds intractable

– In practice, there are few problems that require such a high degree polynomial

2. For many reasonable models of computation, a problem that can be solved in polynomial time in one model can be solved in polynomial time in another

3. The class of polynomial-time solvable problems has nice closure properties

– Polynomials are closed under addition, multiplication, and composition

– If the output of one polynomial-time algorithm is fed into the input of another, the composite algorithm is polynomial

	

	

	

	
	

	
	

	
	

	
	

	

	

	
	

	
	

	
	

	

	
	

	
	

	
	

	

1

2

3

4

5

1

2

3

4

5

6

7

8

9

1

2

3

4

5

6

7

8

9

Live Node: 2, 3, 4, and 5

LIFO Branch & Bound (D-Search)

Children of E-node are inserted in a stack.

FIFO Branch & Bound (BFS)

Children of E-node are inserted in a queue.

1�
2�
3�
�
5�
6�
�
�
7�
8�
4�
�

1�
2�
3�
�
5�
8�
6�
�
�
7�
4�
�

Initial State

Final State

� EMBED Equation.3 ���

1�
2�
3�
�
5�
8�
6�
�
�
7�
4�
�

1�
2�
3�
�
5�
6�
�
�
7�
8�
4�
�

1�
2�
3�
�
5�
6�
4�
�
7�
8�
�
�

1�
2�
3�
�
5�
�
6�
�
7�
8�
4�
�

1�
2�
�
�
5�
6�
3�
�
7�
8�
4�
�

1�
2�
3�
�
5�
8�
6�
�
7�
�
4�
�

1�
2�
3�
�
�
5�
6�
�
7�
8�
4�
�

1�
�
3�
�
5�
2�
6�
�
7�
8�
4�
�

1�
2�
3�
�
5�
8�
6�
�
7�
4�
�
�

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

Cost(4) = 25

�

Vertex = 3

Vertex = 5

6

7

8

10

4

5

35

53

25

Vertex = 2

Vertex = 5

Vertex = 3

3

Vertex = 2

Vertex = 5

Vertex = 4

Vertex = 3

28

50

36

52

28

25

1

2

31

9

11

28

Vertex = 3

�

�

cost(1) = 25

�

_1018722209.unknown

_1018722237.unknown

_1018722263.unknown

_1018722279.unknown

_1018722293.unknown

_1018722256.unknown

_1018722222.unknown

_1018615230.unknown

_1018721927.unknown

_1018615187.unknown

